• 제목/요약/키워드: Grid noise

검색결과 236건 처리시간 0.039초

CFD-CSD 연계 기법을 이용한 로터 블레이드 공력 및 소음 해석 (AERODYNAMIC AND NOISE CALCULATIONS OF HELICOPTER ROTOR BLADES USING LOOSE CFD-CSD COUPLING METHODOLOGY)

  • 강희정;김도형;위성용
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.62-68
    • /
    • 2014
  • The aerodynamic and noise calculations were performed through the CFD-CSD loose coupling methodology. In the loose coupling process, the trimmed rotor airloads were predicted by the in-house CFD code based on unstructured overset meshes, and the trim of the rotorcraft and the aeroelastic deformation of rotor blades were accounted with the CAMRAD II rotorcraft comprehensive code. The set of codes was used to analyze the HART-II baseline test condition. The effect of grid resolution and time step was examined and the loose coupling approach was found to be stable and convergent for the case. Comparison of the resulting sectional airloads, structural deformations, the noise carpets and the wake geometry with experimentally measured data was presented and showed the good agreement.

하이브리드기법을 이용한 저마하수 난류소음의 효율적 전산해석 (Efficient Computation of Turbulent Flow Noise at Low Mach Numbers Via Hybrid Method)

  • 서정희;문영준
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.814-821
    • /
    • 2007
  • A hybrid method is presented for efficient computation of turbulent flow noise at low Mach numbers. In this method, the turbulent flow field is computed by incompressible large eddy simulation (LES), while the acoustic field is computed with the linearized perturbed compressible equations (LPCE) derived in this study. Since LPCE is computed on the rather coarse acoustic grid with the flow variables and source term obtained by the incompressible LES, the computational efficiency of calculation is greatly enhanced. Furthermore, LPCE suppress the instability of perturbed vortical mode and therefore secure consistent and stable acoustic solutions. The proposed LES/LPCE hybrid method is applied to three low Mach number turbulent flow noise problems: i) circular cylinder, ii) isolated flat plate, and iii) interaction between cylinder wake and airfoil. The computed results are closely compared with the experimental measurements.

FFT를 이용한 위상추종 방법 (A Method of PLL(Phase-Locked Loop) using FFT)

  • 류강열;이종필;김태진;유동욱;송의호;민병덕
    • 전력전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.206-212
    • /
    • 2008
  • 본 논문에서는 계통 연계형 태양광 발전 시스템의 새로운 FFT에 의한 위상추종 알고리즘을 제안한다. 신재생 에너지 분야에 적용되는 계통연계형 인버터에서는 계통과 동기를 위해서 반드시 계통의 위상 정보가 필요하다. 일반적으로 사용하는 3상 D-Q 변환에 의한 위상 추종과 달리 새롭게 제안하는 FFT를 사용하는 알고리즘은 게인튜닝 부분이 필요 없어 직접제어가 가능하며, FFT의 특성상 기본주파수 이외의 성분을 제외한 강력한 노이즈 제거효과로 인해 노이즈에 강한 특징을 가지고 있다. 시뮬레이션과 실험을 통하여 제안한 알고리즘의 성능이 만족함을 보였다.

디지털 방사선영상 시스템에서 산란선이 영상 품질에 미치는 영향 (A Study of Scattered Radiation Effect on Digital Radiography Imaging System)

  • 백철하
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제40권1호
    • /
    • pp.71-78
    • /
    • 2017
  • 디지털 방사선영상 시스템에서 산란선은 피검사체와 엑스선의 반응에 의해 발생하는 근원적인 현상이다. 방사선 투사영상은 일차선에 의해 형성되는 감쇠정보를 영상화 하므로 산란선은 투사영상에서 노이즈로써 작용한다. 본 연구에서는 다양한 검사조건에서 발생하는 산란선을 빔 저지체(beam stopper)를 이용하여 정량화하고 동시에 반 산란 격자의 효과를 확인하였다. 또한 산란선이 영상의 품질에 미치는 영향을 확인하기 위해 산란선에 의해 저하되는 대조도 대 잡음비를 측정하였다. 본 연구를 통해 산란선은 피검사체의 두께 및 공기층(air gap)에 지배적인 경향을 가짐을 확인하였다. 또한 산란선은 영상의 대조도를 현격히 저하시킴을 정량적으로 측정하였다. 산란선을 저감하기 위해 격자를 장착함으로써 상당량의 산란선을 저감할 수 있었으나 여전히 두꺼운 피검사체에 대해 많은 양의 산란선이 남아 있음을 확인하였다. 본 연구에서는 산란선을 정량화 하는 방법론을 제시하였으며, 향후 시스템의 최적화에 중요한 역할을 할 수 있을 것으로 기대된다.

회전하는 실린더에 의한 공력소음의 계산 (Computation of Noise from a Rotating Cylinder)

  • 장성욱;이승배;김진화;한재오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.413-418
    • /
    • 2000
  • The noise sources from a rotating cylinder were identified to describe the blunt trailing edge noise. Firstly, LES formulation was applied to a non-orthogonal grid system and was tested with three-dimensional cross-flow over a cylinder with a yaw angle. The computed far-field noise showed peaks at Strouhal numbers ranging from 0.135 to 0.165 for the yawed cylinder flow with end-plates placed at both extremes under the yaw angle of $30^{\circ}$ and Reynolds number of $1.15{\times}10^4$. It was observed that the slantwise shedding at angles other than the cylinder yaw angle is intrinsic to inclined cylinder, with the result of shedding angles between $15^{\circ}$ and $31^{\circ}$. To study the trailing-edge wake thickness and unsteady lift-coefficient distribution in the span-wise direction of a rotating fan blade, the flows around rotating cylinder with 1,000 rpm were simulated and the far-field noise was exactly computed using the Ffowcs-Williams and Hawkings equation with quadrupole source term. The incoming velocities and stagnant zones were continuously distributed along the cylinder, and their changes made the Strouhal sheddings to occur at different phases even at almost same Strouhal number.

  • PDF

Performance Evaluations of Four MAF-Based PLL Algorithms for Grid-Synchronization of Three-Phase Grid-Connected PWM Inverters and DGs

  • Han, Yang;Luo, Mingyu;Chen, Changqing;Jiang, Aiting;Zhao, Xin;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1904-1917
    • /
    • 2016
  • The moving average filter (MAF) is widely utilized to improve the disturbance rejection capability of phase-locked loops (PLLs). This is of vital significance for the grid-integration and stable operation of power electronic converters to electric power systems. However, the open-loop bandwidth is drastically reduced after incorporating a MAF into the PLL structure, which makes the dynamic response sluggish. To overcome this shortcoming, some new techniques have recently been proposed to improve the transient response of MAF-based PLLs. In this paper, a comprehensive performance comparison of advanced MAF-based PLL algorithms is presented. This comparison includes HPLL, MPLC-PLL, QT1-PLL, and DMAF-PLL. Various disturbances, such as grid voltage sag, voltage flicker, harmonics distortion, phase-angle and frequency jumps, DC offsets and noise, are considered to experimentally test the dynamic performances of these PLL algorithms. Finally, an improved positive sequence extraction method for a HPLL under the frequency jumps scenario is presented to compensate for the steady-state error caused by non-frequency adaptive DSC, and a satisfactory performance has been achieved.

전산해석을 통한 고속철도 더블암 팬터그래프의 부재별 공력소음특성 연구 (THE AERO-ACOUSTIC ANALYSIS FOR EACH PART OF DOUBLE ARM PANTOGRAPH OF HIGH SPEED TRAIN)

  • 이상아;강형민;이영빈;김철완;김규홍
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.61-66
    • /
    • 2015
  • In this study, an aero-acoustic analysis around pantograph of a high speed train is performed. Computational technique and grid system is validated with wind tunnel test result and unsteady acoustic pressure data are used for analyzing noise level of each part of pantograph. FLUENT is used for flow analysis and LES(Large Eddy Simulation) is applied for analyzing turbulent flow. For acoustic analysis, Ffowcs Williams-Hawkings(FW-H) acoustics model is used and it bring the aero-acoustic characteristic of pantograph. As the result, contact strip, knee, substructure of pantograph is confirmed as a main source of aero-acoustic noise and it is dealt in various frequencies. The result is expected to help building improved grid system.

스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석 (Flow-Induced Vibration Analysis for Cascades with Stator-Rotor Interaction and Viscosity Effect)

  • 오세원;김동현;김유성;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.848-854
    • /
    • 2006
  • In this study, a computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-\omega$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used flow computing the coupled governing equations of the fluid-structure interaction problem. Detailed FIV responses for different flow conditions are presented with respect to time and vibration characteristics are also physically investigated in the time domain.

  • PDF

유체/구조 연계 변형효과를 고려한 케스케이드의 성능평가 (Performance Evaluation of Cascade Considering Fluid/Structure Coupling Deformation)

  • 오세원;김동현;김유성;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.275-282
    • /
    • 2007
  • In this study, a fluid-structure interaction (FSI) analysis system has been developed in order to evaluate the turbine cascade performance with blade structural deformation effect. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. To consider the deformed position of rotor airfoil, dynamic moving grid method is applied. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-{\varepsilon}$ turbulence models are solved to predict unsteady fluid dynamic loads. A fully implicit time marching scheme based on the Newmark direct integration method with high artificial damping is used to compute the fluid-structure interaction problem. Cascade performance evaluations for different elastic axis positions are presented and compared each other. It is importantly shown that the predicted aerodynamic performance considering structural deformation effect of blade can show some deviations compared to the data generally computed from rigid blade configurations and the position of elastic axis also tend to give sensitive effect.

  • PDF

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF