• 제목/요약/키워드: Grid converter

Search Result 491, Processing Time 0.021 seconds

High-Efficiency DC-DC Converter with Improved Dynamic Response Characteristics for Modular Photovoltaic Power Conversion (모듈형 태양광 발전을 위한 개선된 동적응답 특성을 지닌 고효율 DC-DC 컨버터)

  • Choi, Jae-Yeon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.54-62
    • /
    • 2013
  • This paper proposes a high-efficiency DC-DC converter with improved dynamic response characteristics for modular photovoltaic power conversion. High power efficiency is achieved by reducing switching power losses of the DC-DC converter. The voltage stress of power switches is reduced at primary side. Zero-current switching of output diodes is achieved at secondary side. A modified proportional and integral controller is suggested to improve the dynamic responses of the DC-DC converter. The performance of the proposed converter is verified based on a 200 [W] modular power conversion system including the grid-tied DC-AC inverter. The proposed DC-DC converter achieves the efficiency of 97.9 % at 60 [V] input voltage for a 200 [W] output power. The overall system including DC-DC converter and DC-AC inverter achieves the efficiency of 93.0 % when 200 [W] power is supplied into the grid.

Grid-tied Power Conditioning System for Battery Energy Storage Composed of 2-stage DC-DC converter (2단 DC-DC 컨버터로 구성된 배터리 에너지저장용 계통연계형 전력변환장치)

  • Park, Ah-Ryeon;Kim, Do-Hyun;Kim, Kyeong-Tae;Han, Byung-Moon;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1848-1856
    • /
    • 2012
  • This paper proposes a new grid-tied power conditioning system for battery energy storage, which is composed of a 2-stage DC-DC converter and a PWM inverter. The 2-stage DC-DC converter is composed of an LLC resonant converter connected in cascade with a 2-quadrant hybrid-switching chopper. The LLC resonant converter operates in constant duty ratio, while the 2-quadrant hybrid-switching chopper operates in variable duty ratio for voltage regulation. The operation of proposed system was verified through theoretical analysis and computer simulations. Based on computer simulations, a hardware prototype was built and tested to confirm the technical feasibility of proposed system. The proposed system could have relatively higher efficiency and smaller size than the existing system.

The 500W DC/DC converter development for thermoelectric application (열전소자 활용을 위한 500W급 DC/DC 컨버터 개발)

  • Kim, Sun-Pil;Kim, Se-Min;Park, In-Sun;Ko, Hyun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.219-226
    • /
    • 2019
  • This paper describes the development of a 500W DC/DC converter for use with a thermoelectric module(TEM). A thermoelectric device is a structure in which a P-type semiconductor and an N-type semiconductor are electrically connected in series and thermally connected in parallel. There is a feature that an electromotive force is generated by making a temperature difference between both surfaces of a thermoelectric element. This feature can be used as a renewable power source without the need for fossil energy. The proposed converter boosts the low generation voltage of the thermoelectric element to secure the voltage for the grid connection. This converter is a combination of a resonant converter for boosting and a boost-converter for output voltage control. This structure has an advantage that a voltage can be stepped up at a high efficiency and precise output voltage control is possible. We carry out simulations and experiments to verify the validity.

Phase-Shifted Full-Bridge Converter for Welding Power Supply Capable of Using 220 V, 440 V 3-Phase Grid Voltages (220V, 440V 3상 계통전압 혼용이 가능한 용접 전원장치용 위상천이 풀브리지 컨버터)

  • Yun, Duk-Hyeon;Lee, Woo-Seok;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.372-375
    • /
    • 2021
  • A three-leg inverter-type isolated DC-DC Converter that can use 220 and 440 V grid input voltages is introduced. The secondary circuit structure of the proposed topology is center-tap, which is the same as the conventional phase-shifted full-bridge converter. However, the primary circuit structure is composed of a three-leg inverter structure and a transformer, in which two primary windings are connected in series. The proposed circuit structure has a wider input voltage range than the conventional phase-shifted full-bridge converter, and the circulating-current on the primary-side is reduced. In addition, the voltage stress at the secondary rectifier is greatly improved, and high efficiency can be achieved at a high input voltage by removing the snubber circuit added to the conventional converter. Prototype converters with input DC of 311 V, output of 622 V, and 50 V and 6 kW class specifications were designed and manufactured to verify the validity of the proposed topology; the experimental results are presented.

LCL Filter Design Method for Grid-Connected PWM-VSC

  • Majic, Goran;Despalatovic, Marin;Terzic, Bozo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1945-1954
    • /
    • 2017
  • In recent years, several LCL filter design methods for different converter topologies have been published, many of which use analytical expressions to calculate the ideal converter AC voltage harmonic spectrum. This paper presents the LCL filter design methodology but the focus is on presentation and validation of the non-iterative filter design method for a grid-connected three-phase two-level PWM-VSC. The developed method can be adapted for different converter topologies and PWM algorithms. Furthermore, as a starting point for the design procedure, only the range of PWM carrier frequencies is required instead of an exact value. System nonlinearities, usually omitted from analysis have a significant influence on VSC AC voltage harmonic spectrum. In order to achieve better accuracy of the proposed procedure, the system nonlinear model is incorporated into the method. Optimal filter parameters are determined using the novel cost function based on higher frequency losses of the filter. An example of LCL filter design for a 40 kVA grid-connected PWM-VSC has been presented. Obtained results have been used to construct the corresponding laboratory setup and measurements have been performed to verify the proposed method.

A Seamless Transfer Method of Bidirectional DC-DC Converter for ESS in DC Micro-grids (DC 마이크로그리드에서 에너지 저장장치를 위한 양방향 DC-DC컨버터의 무순단 절체 제어기법)

  • Kwon, Min-Ho;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.194-200
    • /
    • 2014
  • In DC micro-grid system energy storage systems (ESS) are responsible for storing energy and balancing power. Also, control target of the bidirectional DC-DC converter(BDC) for ESS should be changed depending on the operating mode. During the grid connected mode, the BDC controls the battery current or voltage. When a grid fault occurs, the BDC should change the control target to regulate the DC-bus. The BDC with conventional control method may experience large transient state during the mode change. This paper proposes a control method of BDC for ESS. The proposed control method is able to provide autonomous and seamless mode transfer by a variable current limiter. To validate the proposed concept, simulation results using PSIM and experimental results from a 2kW prototype are provided.

A Parameter Selection Method for Multi-Element Resonant Converters with a Resonant Zero Point

  • Wang, Yifeng;Yang, Liang;Li, Guodong;Tu, Shijie
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.332-342
    • /
    • 2018
  • This paper proposes a parameter design method for multi-element resonant converters (MERCs) with a unique resonant zero point (RZP). This method is mainly composed of four steps. These steps include program filtration, loss comparison, 3D figure fine-tuning and priority compromise. It features easy implementation, effectiveness and universal applicability for almost all of the existing RZP-MERCs. Meanwhile, other design methods are always exclusive for a specific topology. In addition, a novel dual-CTL converter is also proposed here. It belongs to the RZP-MERC family and is designed in detail to explain the process of parameter selection. The performance of the proposed method is verified experimentally on a 500W prototype. The obtained results indicate that with the selected parameters, an extensive dc voltage gain is obtained. It also possesses over-current protection and minimal switching loss. The designed converter achieves high efficiencies among wide load ranges, and the peak efficiency reaches 96.9%.

Grid-Connected Variable Speed Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 계통연계형 가변속 풍력발전시스템)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.397-404
    • /
    • 2004
  • This paper proposes a variable speed control scheme of grid-connected wind power generation systems using cage-type induction generators. The induction generator is operated in indirect vector control mode, where the d-axis current controls the excitation level and the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed In order to produce the maximum output power. The generated power flows into the utility grid through the back-to-back PWM converter. The line-side converter controls the dc link voltage by the q-axis current control and can control the line-side power factor by the d-axis current control. Experimental results are shown to verify the validity of the proposed scheme.

Mode Transfer Sequence and Control of Single-phase UPS System (단상 UPS 시스템의 모드 절환 시퀀스 및 제어)

  • Lee, Sang-Suk;Lee, Soon-Ryung;Choi, Bong-Yeon;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.108-115
    • /
    • 2014
  • Recently, Uninterruptible power supply(UPS) is spotlighted from concern about black out, due to reserve power problem caused by increased power consumption. When fault occurs on the grid, UPS system supplies power to loads instead of the grid. Also, it is an advantage of possible operation as Energy storage system(ESS). Bi-directional power control of AC/DC Pulse width modulation(PWM) converter is essential for grid-connected UPS system. And, mode transfer control has to be performed considering phase and dynamic characteristic under grid condition. In this paper, control of mode transfer and bi-directional power control of AC/DC PWM converter is proposed for UPS system. Also, it is verified by simulation and experimental results.

Improved Conditional Integrator Anti-Windup Method for Seamless Transfer of Bidirectional DC-DC Converter in Grid-Connected Battery Energy Storage System (계통연계형 배터리 에너지저장장치용 양방향 DC-DC 컨버터의 무순단 절체를 위한 조건부 적분 안티-와인드업 연구)

  • Eom, Jun-Yong;Choi, Sung-Jin;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.333-342
    • /
    • 2020
  • Power exchanges between the grid and the battery through a bidirectional DC-DC converter are essential for DC microgrid systems. In general, the battery is charged when the grid is connected, and the system is powered by the battery when the grid is disconnected. In this mode transition, the saturation of the voltage controller slows down output response and produces large transient errors in DC link voltage. To solve this problem, a novel anti-windup design is proposed to improve anti-windup performance further. The proposed method stabilizes DC bus voltage through a wider range of battery voltage with faster transition compared with that of conventional methods. The proposed method is verified through an experimental setup composed of a 125 W laboratory-scale DC microgrid system.