• 제목/요약/키워드: Grid converter

검색결과 490건 처리시간 0.024초

11-kV Series-Connected H-Bridge Multilevel Converter for Direct Grid Connection of Renewable Energy Systems

  • Islam, Md. Rabiul;Guo, Youguang;Zhu, Jian Guo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.70-78
    • /
    • 2012
  • Due to the variable nature of renewable energy resources and power demand by consumers, it is difficult to operate a power system installed with only one type of renewable energy resource. Grid-based renewable generation may be the only solution to overcome this problem. The conventional approach based on a low-voltage converter with power frequency transformer is commonly employed for grid connection of offshore renewable energy systems. Because of the heavy weight and large size of the transformer, the system can be expensive and complex in terms of installation and maintenance. In this paper, an 11-kV series connected H-bridge (SCHB) multilevel voltage source converter (VSC) is proposed to achieve a compact and light direct grid connection of renewable energy systems. This paper presents the design, simulation and analysis of a five level (5L)-SCHB and an eleven level (11L)-SCHB VSC for 11-kV grid-based renewable energy systems. The performance, cost, modulation scheme and harmonic spectra of the converter are analyzed.

Real-Time Hardware Simulator for Grid-Tied PMSG Wind Power System

  • Choy, Young-Do;Han, Byung-Moon;Lee, Jun-Young;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.375-383
    • /
    • 2011
  • This paper describes a real-time hardware simulator for a grid-tied Permanent Magnet Synchronous Generator (PMSG) wind power system, which consists of an anemometer, a data logger, a motor-generator set with vector drive, and a back-to-back power converter with a digital signal processor (DSP) controller. The anemometer measures real wind speed, and the data is sent to the data logger to calculate the turbine torque. The calculated torque is sent to the vector drive for the induction motor after it is scaled down to the rated simulator power. The motor generates the mechanical power for the PMSG, and the generated electrical power is connected to the grid through a back-to-back converter. The generator-side converter in a back-to-back converter operates in current control mode to track the maximum power point at the given wind speed. The grid-side converter operates to control the direct current link voltage and to correct the power factor. The developed simulator can be used to analyze various mechanical and electrical characteristics of a grid-tied PMSG wind power system. It can also be utilized to educate students or engineers on the operation of grid-tied PMSG wind power system.

Advanced SOGI-FLL Scheme Based on Fuzzy Logic for Single-Phase Grid-Connected Converters

  • Park, Jin-Sang;Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.598-607
    • /
    • 2014
  • This paper proposes a frequency-locked loop (FLL) scheme for a single-phase grid-connected converter. A second-order generalized integrator (SOGI) based on fuzzy logic (FL) is applied to this converter to achieve precise phase angle detection. The use of this method enables the compensation of the nonlinear characteristic of the frequency error, which is defined in the SOGI scheme as the variation of the central frequency through the self-tuning gain. With the proposed scheme, the performance of the SOGI-FLL is further improved at the grid disturbances, which results in the stable operation of the grid converter under grid voltage sags or frequency variation. The PSIM simulation and experimental results are shown to verify the effectiveness of the proposed method.

DC 배전을 위한 다중 모드 단일 인덕터 컨버터 (Multi-Mode Single Inductor Converter for DC Grid System with a Battery)

  • 김지연;김재국
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.343-349
    • /
    • 2020
  • This study proposes a new single inductor converter for DC grid systems. A conventional system is composed of two independent converters for controlling battery and load. This system is simple but it has two inductors that affect power density and efficiency. The proposed converter can reduce the number of inductors by integrating the two converters and relieve voltage stress on switches by using a battery switching cell. Accordingly, power density and efficiency can be improved using a single inductor and lower voltage-rated switches. A prototype of a 500 W converter is built, and each mode is experimented on to confirm the validity of the proposed converter.

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발 (Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter)

  • 주영아;차민영;한병문;강태섭;차한주
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.

영구자석 동기발전기 시스템을 위한 회전자 관성에너지를 이용한 Sliding Mode제어 기반 LVRT 제어 (Use of Stored Energy in Rotor Inertia for LVRT of PMSG Wind turbine based on Sliding Mode Control)

  • 정대헌;계용호;김청훈;정정주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1058-1059
    • /
    • 2015
  • This paper describes a low-voltage ride-through method for the permanent magnet synchronous generator (PMSG) wind turbine system at a grid fault. The generator side converter regulates the DC link voltage instead of the grid side converter by storing the surplus active power in the rotor inertia during grid fault by the sliding mode controller. The grid side converter controls the grid active power keeping a maximum power point tracking. Simulation results for small scale PMSG wind turbine verify the efficiency of the control method.

  • PDF

Coordinated Control of DFIG System based on Repetitive Control Strategy under Generalized Harmonic Grid Voltages

  • Nian, Heng;Cheng, Chenwen;Song, Yipeng
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.733-743
    • /
    • 2017
  • This paper develops a coordinated control strategy of the doubly fed induction generator (DFIG) system based on repetitive control (RC) under generalized harmonic grid voltage conditions. The proposed RC strategy in the rotor side converter (RSC) is capable of ensuring smooth DFIG electromagnetic torque that will enable the possible safe functioning of the mechanical components, such as gear box and bearing. Moreover, the proposed RC strategy in the grid side converter (GSC) aims to achieve sinusoidal overall currents of the DFIG system injected into the network to guarantee satisfactory power quality. The dc-link voltage fluctuation under the proposed control target is theoretically analyzed. Influence of limited converter capacity on the controllable area has also been studied. A laboratory test platform has been constructed, and the experimental results validate the availability of the proposed RC strategy for the DFIG system under generalized harmonic grid voltage conditions.

Observer-Based FL-SMC Active Damping for Back-to-Back PWM Converter with LCL Grid Filter

  • Gwon, Jin-Su;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.200-207
    • /
    • 2015
  • This paper proposes an active damping control method for a grid-side converter that has an LCL grid filter in the back-to-back converter. To remove the resonant frequency components produced by the LCL filter, it is necessary to measure the grid current. To do this, sensors must be added. However, it is not necessary to add sensors because the grid current is estimated by designing a suboptimal observer. In order to remove the nonlinearity and to gain fast response of control, both feedback linearization and sliding mode control are applied. The proposed method is verified through a simulation.