• 제목/요약/키워드: Grid connected

검색결과 1,223건 처리시간 0.028초

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

DFIG 풍력발전기가 연계된 배전선로의 고조파 공진 특성에 관한 연구 (A Study on Harmonic Resonance in a DFIG Wind Turbine-generator Connected to a Distribution Power Line)

  • 최형주;이흥호
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1383-1389
    • /
    • 2013
  • There were telecommunication noise and malfunctions of the electronic devices occurred over a wide area due to the high harmonic voltage and/or current levels of the Back-to-back converter in the DFIG wind power system even though the magnitude of all harmonics is within the international standards. The triangular carrier signals of the PWM used in the power converter system is related to the telecommunication noise because they are in the range of audible frequencies and amplified by a variety of the standing waves that were excited by harmonic voltage sources in the weak grid system such as a long distance distribution transmission lines. This paper describes the characteristics of the harmonics in the wind turbine-generator, numerical analysis and simulation of the harmonics resonance phenomena in the distribution lines as well as measuring induced voltage of the telecommunication lines in parallel with power lines in order to verify the root cause of the telecommunication noise. These noise problems can occur in a wind turbine power system with a non-linear converter at any time, as well as photovoltaic power system. So, the preliminary review of suitable filter devices and switching frequencies of the PWM have to be required by considering the stability of the controller at the design stage but as part of the measures the effect of the telecommunication cable shields was analyzed by comparing the measured data between multi-conductor with/without shields so as to attenuate the sources of the harmonics voltage induced into the telecommunication lines and to apply the most cost-effective measures in the field.

HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발 (Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source)

  • 신동철;전지환;박성진;이동명
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

자연채광용 박막 투광형 BIPV 창호의 발전특성 분석 연구 (Performance characteristics of building-integrated transparent amorphous silicon PV system for a daylighting application)

  • 윤종호;김석기;송종화;이성진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.280-283
    • /
    • 2007
  • The first grid-connected, building-integrated transparent amorphous silicon photovoltaic installation has been operated since October 2004 in Yongin, Korea. The 2.2kWp transparent PV system was applied to the facade of entrance hall in newly constructed KOLON E&C R&D building. The PV module is a nominal 0.98m ${\times}$ 0.95m, 10% transparent, laminated, amorphous(a-Si) thin-film device rated at 44 Wp per module. To demonstrate the architectural features of thin film PV technologies for daylighting application, transparent PV modules are attached to the building envelope with the form of single glazed window and special point glazing(SPG) frames. Besides power generation, the 10% transmittance of a-Si PV module provides very smooth natural daylight to the entrance hall without any special shading devices for whole year. The installation is fully instrumented and is continuously monitored in order to allow the performance assessment of amorphous silicon PV operating at the prevailing conditions. This paper presents measured power performance data from the first 12 months of operation. For the first year, annual average system specific yield was just 486.4kWh/kWp/year which is almost half of typical amorphous silicon PV output under the best angle and orientation. It should be caused by building orientation and self-shading of adjacent mass. Besides annual power output, various statistical analysis was performed to identify the characteristics of transparent thin film PV system.

  • PDF

Application of Superconducting Flywheel Energy Storage System to Inertia-Free Stand-Alone Microgrid

  • Bae, SunHo;Choi, DongHee;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1442-1448
    • /
    • 2017
  • Recently, electric power systems have been operating with tight margins and have reached their operational limits. Many researchers consider a microgrid as one of the best solutions to relieve that problem. The microgrid is generally powered by renewable energies that are connected through power converters. In contrast to the rotational machines in the conventional power plants, the converters do not have physical rotors, and therefore they do not have rotational inertia. Consequently, a stand-alone microgrid has no inertia when it is powered by the only converter-based-generators (CBGs). As a result, the relationship between power and frequency is not valid, and the grid frequency cannot represent the power balance between the generator and load. In this paper, a superconducting flywheel energy storage system (SFESS) is applied to an inertia-free stand-alone (IFSA) microgrid. The SFESS accelerates or decelerates its rotational speed by storing or releasing power, respectively, based on its rotational inertia. Then, power in the IFSA microgrid can be balanced by measuring the rotor speed in the SFESS. This method does not have an error accumulation problem, which must be considered for the state of charge (SOC) estimation in the battery energy storage system (BESS). The performance of the proposed method is verified by an electromagnetic transient (EMT) simulation.

An application of LAPO: Optimal design of a stand alone hybrid system consisting of WTG/PV/diesel generator/battery

  • Shiva, Navid;Rahiminejad, Abolfazl;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • 제7권1호
    • /
    • pp.67-84
    • /
    • 2020
  • Given the recent surge of interest towards utilization of renewable distributed energy resources (DER), in particular in remote areas, this paper aims at designing an optimal hybrid system in order to supply loads of a village located in Esfarayen, North Khorasan, Iran. This paper illustrates the optimal design procedure of a standalone hybrid system which consists of Wind Turbine Generator (WTG), Photo Voltaic (PV), Diesel-generator, and Battery denoting as the Energy Storage System (ESS). The WTGs and PVs are considered as the main producers since the site's ambient conditions are suitable for such producers. Moreover, batteries are employed to smooth out the variable outputs of these renewable resources. To this end, whenever the available power generation is higher than the demanded amount, the excess energy will be stored in ESS to be injected into the system in the time of insufficient power generation. Since the standalone system is assumed to have no connection to the upstream network, it must be able to supply the loads without any load curtailment. In this regard, a Diesel-Generator can also be integrated to achieve zero loss of load. The optimal hybrid system design problem is a discrete optimization problem that is solved, here, by means of a recently-introduced meta-heuristic optimization algorithm known as Lightning Attachment Procedure Optimization (LAPO). The results are compared to those of some other methods and discussed in detail. The results also show that the total cost of the designed stand-alone system in 25 years is around 92M€ which is much less than the grid-connected system with the total cost of 205M€. In summary, the obtained simulation results demonstrate the effectiveness of the utilized optimization algorithm in finding the best results, and the designed hybrid system in serving the remote loads.

An Adaptive Setting Method for the Overcurrent Relay of Distribution Feeders Considering the Interconnected Distributed Generations

  • Jang Sung-Il;Kim Kwang-Ho;Park Yong-Up;Choi Jung-Hwan;Kang Yong-Cheol;Kang Sang-Hee;Lee Seung-Jae;Oshida Hideharu;Park Jong-Keun
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권4호
    • /
    • pp.357-365
    • /
    • 2005
  • This research investigates the influences of distributed generations (DG), which are interconnected to the bus by the dedicated lines, on the overcurrent relays (OCR) of the neighboring distribution feeders and also proposes a novel method to reduce the negative effects on the feeder protection. Due to the grid connected DG, the entire short-circuit capacity of the distribution networks increases, which may raise the current of the distribution feeder during normal operations as well as fault conditions. In particular, during the switching period for loop operation, the current level of the distribution feeder can be larger than the pickup value for the fault of the feeder's OCR, thereby causing the OCR to perform a mal-operation. This paper proposes the adaptive setting algorithm for the OCR of the distribution feeders having the neighboring dedicated feeders for the DG to prevent the mal-operations of the OCR under normal conditions. The proposed method changes the pickup value of the OCR by adapting the power output of the DG monitored at the relaying point in the distribution network. We tested the proposed method with the actual distribution network model of the Hoenggye substation at the Korea Electric Power Co., which is composed of five feeders supplying the power to network loads and two dedicated feeders for the wind turbine generators. The simulation results demonstrate that the proposed adaptive protection method could enhance the conventional OCR of the distribution feeders with the neighboring dedicated lines for the DG.

전류 궤적 영상의 특징과 트리모델을 이용한 태양광 전력 인버터의 고장진단 (Fault Diagnosis of Solar Power Inverter Using Characteristics of Trajectory Image of Current And Tree Model)

  • 황재호
    • 전자공학회논문지CI
    • /
    • 제47권4호
    • /
    • pp.102-108
    • /
    • 2010
  • 태양광 발전 시스템은 태양 전지에 의해 태양 에너지를 직류로 변환하며 이 직류를 인버터에 의해 일반 가정에서 사용되는 교류로 변환한다. 최근 태양광 발전 시스템의 전력량이 증가하는 추세이므로 대전력을 전송하는 3상 시스템에 관한 연구가 중요하다. 본 논문에서는 태양광전지의 계통연계 시스템의 3상 PWM 인버터의 스위치 개방이 발생했을 경우, 이를 간단히 검출하고 식별하는 방법을 제안한다. 제안 방법은 $\alpha\beta$ 평면에서 전류 벡터의 궤적 영상의 패턴을 특징으로 하여 정상상태와 각각의 고장 상태를 결정하여 트리로 분류한다. 트리 구성을 위한 고장패턴은 21개로 하였으며 고장 패턴트리의 결정을 위한 분류 파라메터는 모양, 영역, 분산각, 벡터각으로 하였다. 각 고장에 대하여 제안방법의 성능을 평가한 결과 모든 고장요소를 정확히 분류하여 패턴 트리를 구성하였다.

자동화 컨테이너 터미널에서 AGV 교착 방지와 회귀 분석을 이용한 경로 선정 방안 (A Deadlock A voidance Method and a Regression-Based Route Selection Scheme for AGV s in Automated Container Terminals)

  • 전진표;류광렬;윤항묵
    • 한국항해항만학회지
    • /
    • 제29권8호
    • /
    • pp.723-733
    • /
    • 2005
  • 본 논문은 AGV 주행 영역을 그리드 단위로 나누어 관리하는 자동화 컨테이너 터미널에서 AGV들 간의 교착을 방지할 수 있는 방안과 목적지까지의 예상 소요 시간이 짧은 경로를 효율적으로 선정할 수 있는 방안을 함께 제안한다. AGV들 간의 교착을 방지하기 위하여 그리드를 노드로 하여 AGV 주행 중 점유 순서의 선후를 연결한 그래프에서 교착 발생 가능성이 있는 강결합 요소를 파악한다. 운행 시에는 강결합 요소에 해당되는 그리드들에 AGV들이 진입하는 것을 통제함으로써 교착 발생을 방지한다. 이와 함께 AGV들 간의 간섭에 의한 지연까지 고려하여 목적지에 보다 일찍 도착할 수 있는 경로를 실시간에 추정할 수 있도록 주행 소요 시간을 추정할 수 있는 회귀 분석 함수를 생성하고 활용하는 방안을 함께 소개한다. 제안한 방안을 시뮬레이션 한 실험 결과 48시간동안 교착 발생 없이 AGV들을 운행할 수 있었으며, 회귀분석 함수를 이용하여 선정한 경로 이용 시 QC별 AGV 방문 횟수를 $2\~10$회 향상시킬 수 있었다.

120kV/70A MOSFETs Switch의 구동회로 개발 (Development of the 120kV/70A High Voltage Switching Circuit with MOSFETs Operated by Simple Gate Drive Unit)

  • 송인호;최창호
    • 전력전자학회논문지
    • /
    • 제8권1호
    • /
    • pp.24-29
    • /
    • 2003
  • 현재 120kV/70A 고압 스위치가 KSTAR의 NBI 시스템에 사용되기 위하여 대전의 원자력 연구소에 설치되어 있다. NBI 시스템은 아크 발생시 이온 소스를 보호하기 위하여 전압의 빠른 차단 및 빔 전류의 유시를 위하여 전압의 빠른 턴온이 요구된다. 따라서 고압 스위치와 아크 검출회로는 NBI 시스템에서 중요한 부분을 차지하고 있다. 고압의 반도체 스위치는 NBI 시스템 뿐만 아니라 산업전반에서 요구되고 있다. NBI 시스템에 적용된 120kV/70A 고압 스위치는 100개의 MOSFET 소자를 직렬연결하였으며 본 논문에서 제안한 바이어스 전원이 없는 간단한 구동회고를 사용하였다. 실험식에서의 시험 및 현장에서 100kW의 모의 저항부하와 NBI 이온 소스에 적용한 실험결과를 제시하였다. 본 논문은 120kV/70A 고압 MOSFET 스위치와 간단한 게이트 구동회로의 설계를 제시하였으며, 제작 및 시험기간 동안의 문제점 및 해결방안에 대해서도 제시하였다.