• Title/Summary/Keyword: Grid connected

Search Result 1,223, Processing Time 0.024 seconds

Development of Solar Power System of Driving a Hybrid LED Streetlight (LED 가로등 구동용 하이브리드 태양광 전원장치 개발)

  • Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6006-6012
    • /
    • 2012
  • General solar street light system needs two separate power supply for charging the battery and driving LED Lamp. In this study, one power supply is used for both charging battery and driving LED lamp. In particular, in order to increase the efficiency of the equipment, (maximum power point tracking: MPPT) was applied which is widely adopted in grid-connected solar systems. LED driver embodied using current control routine of charger into Essential constant current system.

A Novel Hybrid Anti-islanding Method to Improve Reliability of Utility Interactive Inverter for a PMSG-based Wind Power Generation System (PMSG 기반 풍력발전용 계통연계 인버터의 신뢰성 향상을 위한 새로운 하이브리드 단독운전 방지기법)

  • Kang, Sung-Wook;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.27-36
    • /
    • 2013
  • Islanding in a gird connected inverter of wind power generation system may influence a bad effect on equipments or yield safety hazards on grid so it should be detected rapidly and exactly. A passive method to detect islanding is comparatively simpler than an active method but suffers from non detection zone (NDZ). On the other hand, the active method can significantly reduce NDZ by injecting a disturbance into inverter output. To improve the reliability of islanding detection, this paper proposes a hybrid anti-islanding detection method combining the conventional passive method as well as the active method based on novel harmonic injection method using fourier transform. The proposed scheme is fast to detect islanding when NDZ does not exist because it has the nature of passive method. Under NDZ, the active method can detect occurrence of islanding reliably. The effectiveness and validity of the proposed scheme is proved through comparative simulations.

Line-Interactive UPS for Low-Voltage Microgrids

  • Zhang, Ping;Cai, Huanyu;Zhao, Hengyang;Shi, Jianjiang;He, Xiangning
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1628-1639
    • /
    • 2015
  • Line-interactive uninterruptible power supply (UPS) systems are good candidates for providing energy storage within a microgrid. In this paper, a control scheme for a line-interactive UPS system applied in a low-voltage microgrid is presented. It is based on the Q-w and P-E droop control to achieve a seamless transition between grid-connected and stand-alone operation modes. Moreover, a new model for designing the controllers is built in the dq-frame based on the instantaneous power definition. The new-built model takes into account the dynamic performance of the output impedance of the inverter in the dq-frame and can be evaluated in the time domain. Compared to the traditional model based on the instantaneous power definition, the new-built model is more accurate to describe the dynamic performance of the system. Simulation and experimental results obtained with a microgrid consisting of two 40-kW line-interactive UPS systems are given to validate the control strategy of the line-active UPS system and the accuracy of the new-built model.

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

DC-DC Converter of Fixed Duty Ratio Method for 1kW Photovoltaic System (1kW급 태양광 발전용 고정 시비율 방식의 DC-DC 컨버터)

  • Yoo, Ho-Won;Jung, Yong-Min;Lim, Seung-Beom;Lee, Jun-Young;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.46-48
    • /
    • 2008
  • A concern about micro grid connection system is elevated. The reason is that carbon dioxide emission is regionally restricted to prevent the drain of fossil fuel, high oil prices and global warming. The existing photovoltaic DC-DC converter is operated by the full-bridge method. However, the configuration is complicated because a phase shift method is required to raise an efficiency. A photovoltaic DC-DC converter connected with second layered half-bridge converter and boost converter is proposed in this paper. This proposed DC-DC converter is easy to control and has an advantage of reducing the size. Finally, the validity of the proposed converter is verified by the experimentation.

  • PDF

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

Protection of the MMCs of HVDC Transmission Systems against DC Short-Circuit Faults

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.242-252
    • /
    • 2017
  • This paper deals with the blocking of DC-fault current during DC cable short-circuit conditions in HVDC (High-Voltage DC) transmission systems utilizing Modular Multilevel Converters (MMCs), where a new SubModule (SM) topology circuit for the MMC is proposed. In this SM circuit, an additional Insulated-Gate Bipolar Translator (IGBT) is required to be connected at the output terminal of a conventional SM with a half-bridge structure, hereafter referred to as HBSM, where the anti-parallel diodes of additional IGBTs are used to block current from the grid to the DC-link side. Compared with the existing MMCs based on full-bridge (FB) SMs, the hybrid topologies of HBSM and FBSM, and the clamp-double SMs, the proposed topology offers a lower cost and lower power loss while the fault current blocking capability in the DC short-circuit conditions is still provided. The effectiveness of the proposed topology has been validated by simulation results obtained from a 300-kV 300-MW HVDC transmission system and experimental results from a down-scaled HVDC system in the laboratory.

A High Efficiency Two-stage Inverter for Photovoltaic Grid-connected Generation Systems

  • Liu, Jiang;Cheng, Shanmei;Shen, Anwen
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.200-211
    • /
    • 2017
  • Conventional boost-full-bridge and boost-hybrid-bridge two-stage inverters are widely applied in order to adapt to the wide dc input voltage range of photovoltaic arrays. However, the efficiency of the conventional topology is not fully optimized because additional switching losses are generated in the voltage conversion so that the input voltage rises and then falls. Moreover, the electrolytic capacitors in a dc-link lead to a larger volume combined with increases in both weight and cost. This paper proposes a higher efficiency inverter with time-sharing synchronous modulation. The energy transmission paths, wheeling branches and switching losses for the high-frequency switches are optimized so that the overall efficiency is greatly improved. In this paper, a contrastive analysis of the component losses for the conventional and proposed inverter topologies is carried out in MATLAB. Finally, the high-efficiency under different switching frequencies and different input voltages is verified by a 3 kW prototype.

Development of an Adaptive Overcurrent Relaying Algorithm for Distribution Networks Embedding a Large Scaled Wind Farm

  • Jang, Sung-Il;Kim, Ji-Won;Kim, Kwang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.198-205
    • /
    • 2003
  • This paper proposes the adaptive relaying of protective devices applied in the neighboring distribution feeders for reliable and efficient operations of a wind farm interconnected with distribution networks by dedicated lines. A wind farm connected to an electric power network is one of the greatest alternative energy sources. However, the wind turbine generators are influenced by abnormal grid conditions such as disturbances occurring in the neighboring distribution feeders as well as the dedicated power. Particularly, in cases of a fault happening in the neighboring distribution feeders, a wind farm might be accelerated until protective devices clear the fault. Therefore, the delayed operation time of protective devices for satisfying the coordination might overly expose the interconnected wind turbine generators to the fault and cause damage to them. This paper describes the proper delayed operation time of protective relay satisfying the coordination of the distribution networks as well as reducing damage on the interconnected wind farm. The simulation results for the Hoenggye substation model composed of five feeders and one dedicated line using PSCAD/EMTDC showed that the proper delayed time of protective devices reflecting the fault condition and the power output of the wind farm could improve the operational reliability, efficiency, and stability of the wind farm.

A fuzzy logic Controller design for Maximum Power Extraction of variable speed Wind Energy Conversion System (가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계)

  • Kim, Jae-Gon;Kim, Byung-Yoon;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2307-2309
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

  • PDF