• Title/Summary/Keyword: Grid cathode

Search Result 31, Processing Time 0.029 seconds

Effect of Double Grid Cathode in IEC Device (IEC 장치에서 이중 그리드 음극의 영향)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.51-51
    • /
    • 2010
  • We have proposed a new configuration for the improvement of neutron yield without the application of external ion sources in an inertial electrostatic confinement (IEC) device. The application of a double grid cathode to the IEC device is expected to generate a higher ion current than a single grid cathode. This paper verifies the effect of the double grid cathode by both fluid and particle simulation. Through the fluid simulation the optimal shape and applied voltage of the double grid cathode is determined, and through the particle simulation the usefulness of that is confirmed.

  • PDF

Effect of Double Grid Cathode in IEC Device (IEC 장치에서 이중 그리드 음극의 영향)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hui-Dong;Park, Jeong-Ho;Choi, Seung-Kil;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.724-729
    • /
    • 2010
  • We have proposed a new configuration on the cathode structure to improve a neutron yield without the application of external ion sources in an inertial electrostatic confinement (IEC) device. A neutron yield in the IEC device is closely related to the potential well structure generated inside the cathode and is proportional to the ion current. Therefore, the application of a double grid cathode structure to the IEC device is expected to produce a higher ion current and neutron yield than at a single grid cathode due to a high electric field strength generated around the cathode. These possibilities were verified as compared with the ion current calculated from both shape of the single and double grid cathode. Additionally from the results of ion's lives and trajectories examined at various outer cathode voltages and grid cathode configurations by using particle simulations, the validity of the double grid cathode was confirmed.

Particle Simulation on the Effect of Grid Cathode Geometry in SCBF Device (SCBF 장치에서 그리드 음극 구조의 영향에 대한 입자 시뮬레이션)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.742-747
    • /
    • 2007
  • In 2-dimensional SCBF (Spherically Convergent Beam Fusion) device, the effect on neutron production rate of the grid cathode geometry was simulated. The motion of Particles was tracked using Monte Carlo Method including the atomic and molecular collision processes and potential distribution was calculated by Finite Element Method, Main processes of the discharge were the ionization of $D_2$ by fast $D_2^+\;ion$. As the number of cathode rings was small and the size of grid cathode decreased, the ion current increased and neutron production rate will also increase. The star mode discharge which is a very important characteristic in SCBF device, was confirmed by the ionization position.

Effect of Potential Well Structure on Ion Current in SCBF Device (SCBF 장치에서 이온전류에 대한 포텐셜 우물 구조의 영향)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.471-477
    • /
    • 2007
  • SCBF(Spherically Convergent Beam Fusion) device has been studied as a neutron source. Neutron production rate is a most important factor for the application of SCBF device and is proportional to the square of the ion current[1]. It is regarded generally that some correlations between the potential well structure and the ion current exist. In this paper, the ion current and potential distribution were calculated in a variety of grid cathode geometries using FEM-FCT method. Single potential well structure was certified inside the grid cathode. The deeper the potential well became, the higher the ion current due to the high electric field near the grid cathode became.

Optimal Design of Grid Cathode Structure in Spherically Convergent Beam Fusion Device (구형 집속 빔 핵융합 장치에서 그리드 음극 구조의 최적 설계)

  • Ju, Heung-Jin;Park, Jeong-Ho;Hwang, Hwui-Dong;Choi, Seung-Kil;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.381-387
    • /
    • 2008
  • Neutron production rate in spherically convergent beam fusion(SCBF) device as a portable neutron source strongly depends on the ion current and the grid cathode structure. In this paper, as the process of design and analysis, Design of Experiment(DOE) based on the results by Finite Element Method-Flux Corrected Transport(FEM-FCT) method is employed to calculate the ion current. This method is very useful to find optimal design conditions in a short time. Number of rings, radius of rings, and distance between the grid cathode and center are selected as control factors. From the results in the optimized model, the higher ion current is calculated and deeper potential well is also observed.

Numerical simulation for increment of neutron production rate in SCBF device (SCBF 장치에서 중성자 생성률 증대를 위한 수치해석)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2184-2186
    • /
    • 2005
  • Neutron production is very important to apply fusion energy through SCBF(Spherically Convergent Beam Fusion) device and its rate is Proportional to the square of the ion current$({\propto}I^2)$. Also the ion current has a close relation with the potential well structure in grid cathode. In this paper, the ion current is calculated for the increasement of neutron production rate in a variety of grid cathode geometry. The atomic and molecular collision are taken into account by Monte Carlo Method and Potential is calculated by Finite Element Method. Main processes of the discharge is the ionization of $D_2$ by fast $D_2^+$ ion. As the number of a cathode ring is small and gap distance decreases, the ion current increases and neutron production rate will increase.

  • PDF

Effects of Alloying Elements on the Surface Characteristics of Pb-Substrate for Battery (Pb-기판의 표면특성에 미치는 합금원소의 영향)

  • Oh, S.W.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.302-311
    • /
    • 2006
  • Nowadays the open-type lead-acid battery for vehicle use is being replaced with the sealed-type because it needs no maintenance and has a longer cycle life. Thus researches on this battery are being conducted very actively by many advanced battery companies. There is, however, a serious problem with the maintenance free(MF) battery that its cathode electrode has a limited cycle life due to a corrosion of grid. In this study, it was aimed to improve a corrosion resistance of the cathode grid which is commonly made of Pb-Ca alloy for a mechanical strength. For this purpose, various amounts of alloying elements such as Sn, Ag and Ba were added singly or together to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test and their corrosion layers appeared at the interface between the grids and the active materials were carefully observed in order to clarify effects of alloying elements.

Development of a Virtual Frisch-Grid CZT Detector Based on the Array Structure

  • Kim, Younghak;Lee, Wonho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Background: Cadmium zinc telluride (CZT) is a promising material because of a high detection efficiency, good energy resolution, and operability at room temperature. However, the cost of CZT dramatically increases as its size increases. In this study, to achieve a large effective volume with relatively low cost, an array structure comprised of individual virtual Frisch-grid CZT detectors was proposed. Materials and Methods: The prototype consisted of 2 × 2 CZTs, a holder, anode and cathode printed circuit boards (PCBs), and an application-specific integrated circuit (ASIC). CZTs were used and the non-contacting shielding electrode method was applied for virtual Frisch-grid effect. An ASIC was used, and the holder and the PCBs were fabricated. In the current system, because the CZTs formed a common cathode, a total of 5 channels were assigned for data processing. Results and Discussion: An experiment using 137Cs at room temperature was conducted for 10 minutes. Energy and timing information was acquired and the depth of interaction was calculated by the timing difference between the signals of both electrodes. Based on obtained three-dimensional position information, the energy correction was carried out, and as a result the energy spectra showed the improvements. In addition, a Compton image was reconstructed using the iterative method. Conclusion: The virtual Frisch-grid CZT detector based on the array structure was developed and the energy spectra and the Compton image were successfully acquired.

A Study on Discharge Characteristics of Spherically Convergent Beam Fusion Device (구형 집속 빔 핵융합 장치의 방전특성 연구)

  • Park, Jeong-Ho;Ju, Heung-Jin;Kim, Bong-Seok;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1823-1825
    • /
    • 2004
  • Spherically convergent beam fusion device accelerate ions, which are generated between outer anode and inner grid cathode, toward the spherical center. The collision of opposite direction ions give rise to fusion reactions. Spherically convergent beam fusion device is very simple and compact, therefore the device has a potential that is applied to a portable neutron source. An experimental device consist of a 20cm-diameter spherical mesh-type anode and 7cm-diameter open spherical grid cathode and was maintained at a constant pressure of about 1333 Pa by feeding argon gas.

  • PDF

Experimental for Performance of electron 9un cathode electrode (Y-824) characteristics (전자총 캐소드전극(Y-824)의 특성실험)

  • Son, Y.G.;Kwon, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1552-1553
    • /
    • 2006
  • A thermionic gun of injector linac for pohang accelerator laboratory is required to generate beam pulse width less than 1 nsec. The gun uses cathode-grid assembly(EIMAC Y824) and operates up to 80 kV anode voltage. In order research characteristics of the electron gun, emission current from gun wear measured by the wall current monitor. In this paper the pulser system and characteristics of the emission current in region from 30 mA to 15 A are described.

  • PDF