Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.158-158
/
2023
Characterizing the performance of precipitation (hereafter PRE) products in estimating the uncertainties in daily PRE in the era of global warming is of great value to the ecosystem's sustainability and human survival. This study intercompares the performance of different PRE products (gauge-based, satellite and reanalysis) sourced from the Frequent Rainfall Observations on GridS (FROGS) database over diverse climate zones in Africa and identifies regions where they depict minimal uncertainties in order to build optimal maps as a guide for different climate users. This is achieved by utilizing various techniques, including the triple collection (TC) approach, to assess the capabilities and limitations of different PRE products over nine climatic zones over the continent. For daily scale analysis, the uncertainties in light PRE (0.1 5mm/day) are prevalent over most regions in Africa during the study duration (2001-2016). Estimating the occurrence of extreme PRE events based on daily PRE 90th percentile suggests that extreme PRE is mainly detected over central Africa (CAF) region and some coastal regions of west Africa (WAF) where the majority of uncorrected satellite products show good agreement. The detection of PRE days and non-PRE days based on categorical statistics suggests that a perfect POD/FAR score is unattainable irrespective of the product type. Daily PRE uncertainties determined based on quantitative metrics show that consistent, satisfactory performance is demonstrated by the IMERG products (uncorrected), ARCv2, CHIRPSv2, 3B42v7.0 and PERSIANN_CDRv1r1 (corrected), and GPCC, CPC_v1.0, and REGEN_ALL (gauge) during the study period. The optimal maps that show the classification of products in regions where they depict reliable performance can be recommended for various usage for different stakeholders.
Transition studies have been gaining attention among innovation researchers from the early 1990's mainly influenced by emerging global agendas on sustainability. In this paper, we review research issues and trends focusing on four prominent transition theories - Technological innovation systems, Multi-level perspective, Transition management and Strategic niche management. After reviewing main characteristics, research trends and debates of each theory from established literatures, we conduct comparative analysis of these theories and suggest integrated framework that can be considered when modeling transition policy. This integrated framework is applied to the case study on smart-grid policy of Korea.
Reconstructing underwater geometry in real time with forward-looking sonar is critical for applications such as localization, mapping, and path planning. Geometrical data must be repeatedly calculated and overwritten in real time because the reliability of the acoustic data is affected by various factors. Moreover, scattering of signal data during the coordinate conversion process may lead to geometrical errors, which lowers the accuracy of the information obtained by the sensor system. In this study, we propose a three-step data processing method with low computational cost for real-time operation. First, the number of data points to be interpolated is determined with respect to the distance between each point and the size of the data grid in a Cartesian coordinate system. Then, the data are processed with a nonlinear interpolation so that they exhibit linear properties in the coordinate system. Finally, the data are transformed based on variations in the position and orientation of the sonar over time. The results of an evaluation of our proposed approach in a simulation show that the nonlinear interpolation operation constructed a continuous underwater geometry dataset with low geometrical error.
Wang, Won-joon;Seo, Jae Seung;Eom, Junghyun;Kim, Sam Eun;Kim, Hung Soo
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.71-71
/
2021
현재 국내에서 사용되고 있는 지자체 단위 위험도 평가 기법들은 자연재난과 사회재난으로부터 유발되는 여러 위험성들을 함께 고려하여 평가에 반영하고 있다. 또한, 지자체 내에서 홍수위험에 노출될 수 있는 대상만을 선별하여 분석한 것이 아닌 지자체별 단순 통계값으로 평가가 이루어지기 때문에 홍수위험에 대한 정확한 평가가 어렵다는 한계를 가지고 있다. 따라서 본 연구에서는 Indicator Based Approach(IBA)에서 제시하는 평가 항목인 Hazard, Exposure, Vulnerability, Capacity 중 Exposure에 해당하는 건축물수를 대상으로 홍수위험지도와 중첩되는 건축물들을 선별하여 홍수위험도 평가를 수행하였다. 지자체별 건축물수 산정은 2018년 11월 기준 경기도 31개 시군별 도로명주소 전자지도(건물)와 500m × 500m 건축물수 격자자료를 사용하였다. 건축물수 격자자료는 도로명주소 전자지도의 건물 폴리곤 자료 대비 분석이 간편하다는 장점을 가지고 있다. 비교 분석을 통해 공간분석자료의 유형에 따라 발생하는 통계값의 차이는 격자자료에 보정계수를 적용하여 보완하였다. 보정된 경기도 지자체별 건축물수 격자자료로 세부지표 지수를 산정한 결과 단순히 자지체별 건축물수를 사용했을 때에는 화성시, 용인시, 평택시 순으로 지수가 크게 산정되었다, 하지만 홍수위험지도와 중첩된 건축물수를 사용했을 때에는 고양시, 광명시, 김포시 순으로 지수가 크게 산정되었다. 본 연구를 통해서 건축물수 격자자료와 홍수위험지도를 사용하여 위험도 평가를 수행했을 때 기존 방법론 대비 합리적인 평가결과를 얻을 수 있었다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.28
no.3D
/
pp.417-422
/
2008
With standard orthorectification algorithms, one can produce unacceptable structure duplication in the orthophoto due to the double projection. Because of the abrupt height differences, such structure duplication is a frequently occurred phenomenon in the dense urban area which includes multi-history buildings. Therefore, occlusion area detection especially for the urban area is a critical issue in generation of true orthophoto. This paper deals with occlusion area detection with visible height based approach from aerial imagery and LiDAR. In order to accomplish this, a grid format DSM is produced from the point clouds of LiDAR. Next, visible height based algorithm is proposed to detect the occlusion area for each camera exposure station with DSM. Finally, generation of true orthophoto is presented with DSM and previously produced occlusion maps. The proposed algorithms are applied in the Purdue campus, Indiana, USA.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.329-329
/
2022
Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.569-582
/
2023
Lead-acid Battery is the oldest rechargeable battery system and has maintained its position in the rechargeable battery field. The battery causes thermal runaway for various reasons, which can lead to major accidents. Therefore, preventing thermal runaway is a key part of the battery management system. Recently, research is underway to categorize thermal runaway battery cells into machine learning. In this paper, we present a thermal runaway hazard cell detection and verification algorithm using DBSCAN and statistical method. An experiment was conducted to classify thermal runaway hazard cells using only the resistance values as measured by the Battery Management System (BMS). The results demonstrated the efficacy of the proposed algorithms in accurately classifying thermal runaway cells. Furthermore, the proposed algorithm was able to classify thermal runaway cells between thermal runaway hazard cells and cells containing noise. Additionally, the thermal runaway hazard cells were early detected through the optimization of DBSCAN parameters using a grid search approach.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.3
/
pp.41-49
/
2024
In this paper, we validate simulation results for the design optimization of a Superconducting Fault Current Limiter (SFCL) intended for use in Medium Voltage Direct Current systems (MVDC). With the increasing integration of renewable energy and grid connections, researchers are focusing on medium-voltage systems for balancing energy in new and renewable energy networks, rather than traditional transmission or distribution networks. Specifically, for DC distribution networks dealing with fault currents that must be rapidly blocked, current-limiting systems like superconducting current limiters offer distinct advantages over the operation of DC circuit breakers. The development of such superconducting current limiters requires finite element analysis (FEM) and an extensive design process before prototype production and evaluation. To expedite this design process, the design outcomes are assimilated using a Reduced Order Model (ROM). This approach enables the verification of results akin to finite element analysis, facilitating the optimization of design simulations for production and mass production within existing engineering frameworks.
During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.
Seyed Mohammad Mojtabaei;Rasoul Khandan;Iman Hajirasouliha
Steel and Composite Structures
/
v.51
no.4
/
pp.441-456
/
2024
This paper aims to develop Machine Learning (ML) algorithms to predict the buckling resistance of cold-formed steel (CFS) channels with restrained flanges, widely used in typical CFS sheathed wall panels, and provide practical design tools for engineers. The effects of cross-sectional restraints were first evaluated on the elastic buckling behaviour of CFS channels subjected to pure axial compressive load or bending moment. Feedforward multi-layer Artificial Neural Networks (ANNs) were then trained on different datasets comprising CFS channels with various dimensions and properties, plate thicknesses, and restraining conditions on one or two flanges, while the elastic distortional buckling resistance of the elements were determined according to the Finite Strip Method (FSM). To develop less biased networks and ensure that every observation from the original dataset has the chance of appearing in the training and test set, a K-fold cross-validation technique was implemented. In addition, the hyperparameters of the ANNs were tuned using a grid search technique to provide ANNs with optimum performances. The results demonstrated that the trained ANNs were able to predict the elastic distortional buckling resistance of CFS flange-restrained elements with an average accuracy of 99% in terms of coefficient of determination. The developed models were then used to propose a simple ANN-based design formula for the prediction of the elastic distortional buckling stress of CFS flange-restrained elements. Finally, the proposed formula was further evaluated on a separate set of unseen data to ensure its accuracy for practical applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.