• Title/Summary/Keyword: Grid System

Search Result 4,060, Processing Time 0.025 seconds

Calculation of Appropriate Subsidies for Energy Storage System to Improve Power Self-sufficiency Consider Microgrid Operation (마이크로그리드 운영에 따른 전력자립 향상을 위한 에너지저장장치의 적정보조금 산정)

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.486-492
    • /
    • 2017
  • In recent years, renewable energy sources have been mentioned as solution to environmental regulation and energy supply-demand. Energy storage systems are needed to mitigate the intermittent output characteristics of renewable energy sources and to operate micro grid efficiently using renewable energy generation systems. However, despite the necessity of energy storage system, this cannot secure the economical efficiency of the energy storage system by high initial cost. In this paper, a micro grid is constructed to supply electric power to industrial customers by using solar power generation system and energy storage system among renewable energy generation power sources and operated to improve energy independence. In the case study, we use photovoltaic system which is representative renewable energy generation system. Unlike conventional photovoltaic system, this system uses floating photovoltaic system with the advantage of having high output and no land area limitations. It is operated for the purpose of improving energy independence in the micro grid. In order to secure economical efficiency, the energy storage system operates a micro grid with a minimum capacity. Finally, this paper calculates the appropriate subsidy for the energy storage capacity.

Ontology Based Semantic Information System for Grid Computing (그리드 컴퓨팅을 위한 온톨로지 기반의 시맨틱 정보 시스템)

  • Han, Byong-John;Kim, Hyung-Lae;Jeong, Chang-Sung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.87-103
    • /
    • 2009
  • Grid computing is an expanded technology of distributed computing technology to use low-cost and high-performance computing power in various fields. Although the purpose of Grid computing focuses on large-scale resource sharing, innovative applications, and in some case, high-performance orientation, it has been used as conventional distributed computing environment like clustered computer until now because Grid middleware does not have common sharable information system. In order to use Grid computing environment efficiently which consists of various Grid middlewares, it is necessary to have application-independent information system which can share information description and services, and expand them easily. Thus, in this paper, we propose a semantic information system framework based on web services and ontology for Grid computing environment, called WebSIS. It makes application and middleware developer easy to build sharable and extensible information system which is easy to share information description and can provide ontology based platform-independent information services. We present efficient ontology based information system architecture through WebSIS. Discovering appropriate resource for task execution on Grid needs more high-level information processing because Grid computing environment is more complex than other traditional distributed computing environments and has various considerations which are needed for Grid task execution. Thus, we design and implement resource information system and services by using WebSIS which enables high-level information processing by ontology reasoning and semantic-matching, for automation of task execution on Grid.

  • PDF

A Study on the Agent (Protective Device)-based Fault Determination and Separation Methodology for Smart Grid Distribution System

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.102-108
    • /
    • 2015
  • This paper proposes a new fault isolation methodology for a smart protective device which plays an agent role on the smart grid distribution system with the distributed generation. It, by itself, determines accurately whether its protection zone is fault or not, identifies the fault zone and separates the fault zone through the exchange of fault information such as the current information and the voltage information with other protective devices using bi-directional communication capabilities on the smart grid distribution system. The heuristic rules are obtained from the structure and electrical characteristics determined according to the location of the fault and DG (Distributed Generation) when faults such as single-phase ground fault, phase-to-phase short fault and three-phase short fault occur on the smart grid distribution system with DG.

VPI-based Control Strategy for a Transformerless MMC-HVDC System Under Unbalanced Grid Conditions

  • Kim, Si-Hwan;Kim, June-Sung;Kim, Rae-Young;Cho, Jin-Tae;Kim, Seok-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2319-2328
    • /
    • 2018
  • This paper introduces a control method for a transformerless MMC-HVDC system. The proposed method can effectively control the grid currents of the MMC-HVDC system under unbalanced grid conditions such as a single line-to-ground fault. The proposed method controls the currents of the positive sequence component and the negative sequence component without separating algorithms. Therefore, complicated calculations for extracting the positive sequence and the negative sequence component are not required. In addition, a control method to regulate a zero sequence component current under unbalanced grid conditions in the transformerless MMC-HVDC system is also proposed. The validity of the proposed method is verified through PSCAD/EMTDC simulation.

A Study on the Grid-Interfacing Storage System for Migrating Customers with Renewable Energy Sources into Microgrid (신재생에너지가 설치된 수용가의 마이크로그리드 구현을 위한 그리드-인터페이스 에너지 저장장치에 관한 연구)

  • Lee, Kyebyung;Son, Kwang-Myoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.46-53
    • /
    • 2013
  • This paper introduces a grid-interactive storage system to operate the customers without voltage source inverters as a microgrid. The proposed storage system does not require any modification of the control scheme of the inverters existing within the customers. Novel control scheme of the grid-interfacing storage system according to its new structure ensures the seamless transition between the grid-connected and islanded operation of the microgrid.

Coordinated Control of DFIG System based on Repetitive Control Strategy under Generalized Harmonic Grid Voltages

  • Nian, Heng;Cheng, Chenwen;Song, Yipeng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.733-743
    • /
    • 2017
  • This paper develops a coordinated control strategy of the doubly fed induction generator (DFIG) system based on repetitive control (RC) under generalized harmonic grid voltage conditions. The proposed RC strategy in the rotor side converter (RSC) is capable of ensuring smooth DFIG electromagnetic torque that will enable the possible safe functioning of the mechanical components, such as gear box and bearing. Moreover, the proposed RC strategy in the grid side converter (GSC) aims to achieve sinusoidal overall currents of the DFIG system injected into the network to guarantee satisfactory power quality. The dc-link voltage fluctuation under the proposed control target is theoretically analyzed. Influence of limited converter capacity on the controllable area has also been studied. A laboratory test platform has been constructed, and the experimental results validate the availability of the proposed RC strategy for the DFIG system under generalized harmonic grid voltage conditions.

A Cooperative Multiagent System for Enhancing Smart Grid Performance

  • Mohammad A Obeidat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Sharing power data between electrical power grids is crucial in energy management. The multi-agent approach has been applied in various applications to improve the development of complex systems by making them both independent and collaborative. The smart grid is one of the most intricate systems that requires a higher level of independence, reliability, protection, and adaptability to user requests. In this paper, a multi-agent system is utilized to share knowledge and tackle challenges in smart grids. The shared information is used to make decisions that aid in power distribution management within the grid and with other networks. The proposed multi-agent mechanism improves the reliability of the power system by providing the necessary information at critical times. The results indicate that the multi-agent system operates efficiently and promptly, making it a highly promising candidate for smart grid management.

Stability Improvement of Distributed Power Generation Systems with an LCL-Filter Using Gain Scheduling Based on Grid Impedance Estimations

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.599-605
    • /
    • 2011
  • This paper proposes a gain scheduling method that improves the stability of grid-connected systems employing an LCL-filter. The method adjusts the current controller gain through an estimation of the grid impedance in order to reduce the resonance that occurs when using an LCL-filter to reduce switching harmonics. An LCL-filter typically has a frequency spectrum with a resonance peak. A change of the grid-impedance results in a change to the resonant frequency. Therefore an LCL-filter needs a damping method that is applicable when changing the grid impedance for stable system control. The proposed method instantaneously estimates the grid impedance and observes the resonant frequency at the same time. Consequently, the proposed method adjusts the current controller gain using a gain scheduling method in order to guarantee current controller stability when a change in the resonant frequency occurs. The effectiveness of the proposed method has been verified by simulations and experimental results.

A Study About Grid Impose Method On Real-Time Simulator For Wind-Farm Management System (풍력발전단지 관리·분석 시스템의 Real-Time Simulator 도입을 위한 계통모델 연동방안 연구)

  • Jung, Seungmin;Yoo, Yeuntae;Kim, Hyun-Wook;Jang, Gilsoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.28-37
    • /
    • 2015
  • Owing to the variability of large-scaled wind power system, the development of wind farm management technologies and related compensation methods have been receiving attention. To provide an accurate and reliable output power, certain wind farm adopts a specified management system including a wind prediction model and grid expectation solutions for considering grid condition. Those technologies are focused on improving the reliability and stability issues of wind farms, which can affect not only nearby system devices but also a voltage condition of utility grid. Therefore, to adapt the develop management system, an expectation process about voltage condition of Point of Common Coupling should be integrated in operating system for responding system requirements in real-time basis. This paper introduce a grid imposing method for a real-time based wind farm management system. The expected power can be transferred to the power flow section and the required quantity about reactive power can be calculated through the proposed system. For the verification process, the gauss-seidel method is introduced in the Matlab/Simulink for analysing power flow condition. The entire simulation process was designed to interwork with PSCAD for verifying real power system condition.