• Title/Summary/Keyword: Grid Size

Search Result 715, Processing Time 0.026 seconds

Plausible grid size for a real time decision making system based 3D water quality model (실시간 수질관리도구로서의 3차원 수질모형의 최적 격자크기 산정)

  • Ahn, Ki-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.575-583
    • /
    • 2011
  • In this study, the plausible grid size was estimated to increase for efficiency of reservoir management using 3 dimensional water quality model. To validate utilization of a real time water quality management tool, ELCOM-CAEDYM model was applied to Soyang reservoir in korea. 100m grid size can represent the real topography and take out exact analysis results. $400{\times}400m$ grid can be easily used to analysis because of data capacity. Consequently, the grid size of 200m or 300m was recommended to establish 3D model considering the required simulation time and the irrelevance between horizontal grid size and vertical distribution for temperature and turbidity analysis.

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF

Numerical Simulation of Groundwater Discharge Into a Tunnel (터널 지하수 유출량 산정을 위한 수치모델)

  • Jeong, Jae-Hyeon;Koo, Min-Ho
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.369-376
    • /
    • 2015
  • Numerical models simulating groundwater flow are often used to estimate groundwater discharge into a tunnel. In designing numerical models, the grid size should be carefully considered to ensure that groundwater discharge is accurately predicted. However, several recent studies have employed various grid sizes without providing an adequate explanation for their choice. This paper suggests the optimal grid size based on a comparison of numerical models with analytical solutions. Discrepancies between numerical and analytical solutions result from the effect of model boundaries as well as the grid size. By nullifying boundary effects, the errors solely associated with the grid size could be analyzed. The optimal grid size yielding accurate numerical solutions was thus derived. The suggested relationship between tunnel radius and optimal grid size is analogous to the relationship between the equivalent well block radius and grid size.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Evaluation of Dose Volume and Radiobiological Indices by the Dose Calculation Grid Size in Nasopharyngeal Cancer VMAT (비 인두암 체적 조절 호형 방사선 치료의 선량 계산 격자 크기에 따른 선량 체적 지수와 방사선 생물학적 지수의 평가)

  • Kang, Dong-Jin;Jung, Jae-Yong;Shin, Young-Joo;Min, Jung-Whan;Shim, Jae-Goo;Park, So-Hyun
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.265-272
    • /
    • 2020
  • The purpose of this study was to investigate the dose-volume indices and radiobiological indices according to the change in dose calculation grid size during the planning of nasopharyngeal cancer VMAT treatment. After performing the VMAT treatment plan using the 3.0 mm dose calculation grid size, dose calculation from 1.0 mm to 5.0 mm was performed repeatedly to obtain a dose volume histogram. The dose volume index and radiobiological index were evaluated using the obtained dose volume histogram. The smaller the dose calculation grid size, the smaller the mean dose for CTV and the larger the mean dose for PTV. For OAR of spinal cord, brain stem, lens and parotid gland, the mean dose did not show a significant difference according to the change in dose calculation grid size. The smaller the grid size, the higher the conformity of the dose distribution as the CI of the PTV increases. The CI and HI showed the best results at 3.0 mm. The smaller the dose calculation grid size, the higher the TCP of the PTV. The smaller the dose calculation grid size, the lower the NTCP of lens and parotid. As a result, when performing the nasopharynx cancer VMAT plan, it was found that the dose calculation grid size should be determined in consideration of dose volume index, radiobiological index, and dose calculation time. According to the results of various experiments, it was determined that it is desirable to apply a grid size of 2.0 - 3.0 mm.

Selection of Grid Size in Fire Simulation for Large Scale Buildings by Using FDS (FDS를 이용한 대규모 건축물 화재 시뮬레이션의 격자크기 선정)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.67-72
    • /
    • 2012
  • Fire simulation was carried out for an enclosure with three doorways of $20{\times}10{\times}3m^3$ and a cleanroom of $44{\times}48{\times}10m^3$, to suggest appropriate grid size in fire simulations by using of FDS for large scale buildings. The variations of temperature and visibility with time were compared for the x and y direction grid sizes of 0.1~1.0 m (aspect ratios 0.5~5.0), fixing the z direction grid size 0.2 m. The results showed that the grid sizes 0.5 m (aspect ratio 2.5) or smaller are appropriate among the grid sizes tested, whereas 1.0 m is not acceptable. It was confirmed that estimate of the available safe egress time requires a great care due to fluctuations in temperature, visibility, etc., and further investigations on the grid size when selecting a large grid size inevitable, and on the aspect ratios for a larger grid are in need.

Effects of Grid Size on Noise Prediction Results of Road Traffic Noise Map (소음지도 격자크기가 도로교통 소음도 예측 결과에 미치는 영향)

  • Kim, Ji-Yoon;Park, In-Sun;Park, Chan-Youn;Park, Sang-Kyu;Ryu, Bong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.867-871
    • /
    • 2007
  • Noise map is very efficient tool to evaluate the road traffic noise. However, calculation time and accuracy of noise map heavily depend on the grid size of noise map. In this study, effects of grid size on the prediction results of road traffic noise map have been investigated in detail for urban and rural areas, respectively, and efficient grid size for the noise map has been proposed.

  • PDF

Effects of Grid Size on Noise Prediction Results of Road Traffic Noise Map (소음지도 격자크기가 도로교통 소음도 예측결과에 미치는 영향)

  • Kim, Ji-Yoon;Park, In-Sun;Park, Chan-Youn;Park, Sang-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • Noise map is very efficient tool to evaluate the road traffic noise. However, calculation time and accuracy of noise map heavily depend on the grid size of noise map. In this study, effects of grid size on the prediction results of road traffic noise map have been investigated in detail for urban and rural areas, respectively, and efficient grid size for the noise map has been proposed.

Determination of Grid Size to Extract Hydrologic -Topographical Parameters (수문지형인자 추출에 따른 격자크기의 결정)

  • Jeong, In-Ju;Seo, Kyu-Woo;Kim, Ga-Ya
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.23-33
    • /
    • 2005
  • Hydrologic-topographical parameters were extracted using GIS. The use of GIS is more effective and exact than the execution by person. And the purpose of this paper is to extract more efficient size of grid for DEM analysis by applying GIS technology. As a result, when the grid size is less than $100m{\times}100m$ the trend of extracted parameters is similar but when the grid size is over $100m{\times}100m$ the trend of extraction parameters is dispersive. Therefore, it is appropriate to extract hydrologic-topographical parameters the grid size of $100m{\times}100m$ in DEM analysis.

  • PDF