• 제목/요약/키워드: Grid Generator

검색결과 459건 처리시간 0.026초

Protection for a Wind Turbine Generator in a Large Wind Farm

  • Zheng, Tai-Ying;Kim, Yeon-Hee;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.466-473
    • /
    • 2011
  • This paper proposes a protection algorithm for a wind turbine generator (WTG) in a large wind farm. To minimize the outage section, a protection relay for a WTG should operate instantaneously for an internal fault or a connected feeder fault, whereas the relay should not operate for an internal fault of another WTG connected to the same feeder or an adjacent feeder fault. In addition, the relay should operate with a delay for an inter-tie fault or a grid fault. An internal fault of another WTG connected to the same feeder or an adjacent feeder fault, where the relay should not operate, is determined based on the magnitude of the positive sequence current. To differentiate an internal fault or a connected feeder fault from an inter-tie fault or a grid fault, the phase angle of the negative sequence current is used to distinguish a fault type. The magnitude of the positive sequence current is then used to decide either instantaneous operation or delayed operation. The performance of the proposed algorithm is verified under various fault conditions with EMTP-RV generated data. The results indicate that the algorithm can successfully distinguish instantaneous operation, delayed operation, or non-operation depending on fault positions and types.

실 계통 연계 1.5MW급 DFIG 풍력발전 시뮬레이터의 응동특성 분석 (Analysis of Dynamic Response of 1.5MW DFIG Wind Power Simulator with Real-grid Connection)

  • 최영도;전영수;전동훈;신정훈;김태균;정병창
    • 신재생에너지
    • /
    • 제5권3호
    • /
    • pp.4-12
    • /
    • 2009
  • The effect of change in DFIG (doubly-fed wind power generator) rotating speed and active power on the grid was analyzed to understand the characteristics of wind power using the wind power simulator connected to the grid at Gochang Power Quality Test Center. Electric power quality improvement devices (DVR, STATCOM, SSTS) and electric power quality disturbance application devices for 22.9 kV grid are equipped at Gochang Power Quality Test Center. Induction motor and VVVF inverter were used to emulate the blade of a wind power generator, and a simulator for Cage wound induction generator and DFIG was developed. The trial line were assumed to be 20 km and 40 km in length, and variable wind speed pattern was set using wind speed data from Ducjeokdo to verify the power characteristics of the wind power generator according to rotating speed.

  • PDF

농형 유도발전기를 이용한 계통연계형 가변속 풍력발전시스템 (Grid-Connected Variable Speed Wind Power Generation System Using Cage-Type Induction Generators)

  • 김형균;이동춘;석줄기
    • 전력전자학회논문지
    • /
    • 제9권4호
    • /
    • pp.397-404
    • /
    • 2004
  • 본 논문에서는 농형유도발전기를 이용한 계통연계형 풍력발전시스템의 가변속제어 기법이 제안된다. 농형유도발 전기는 간접벡터제어 방식으로 동작되는데 d-축 전류에 의해 여자가 제어되고 q-축 전류에 토크가 제어된다. 이 토크제어에 의해 발전기는 풍속의 변화에 대해서 항상 최대전력을 발생하도록 가변속 제어된다. 발전된 전력은 back-to-back PWM 컨버터에 의해 계통으로 공급된다. 계통측 컨버터는 q-축 전류 제어에 의해 직류링크 전압을 제어하고 d-축 전류 제어에 의해 계통측 역률을 제어할 수 있다. 제안된 기법은 M-G세트로 구성된 터빈시뮬레이터를 이용하여 실험적으로 검증된다.

독립형 마이크로그리드내 풍력발전출력이 주파수 품질에 미치는 영향 분석 (Study on Impact of Wind Power in Grid Frequency Quality of Stand-alone Microgrid)

  • 허재선;김재철
    • 조명전기설비학회논문지
    • /
    • 제30권3호
    • /
    • pp.79-85
    • /
    • 2016
  • This paper analyzed the influence of wind power fluctuations in grid frequency of a stand-alone microgrid that is hybrid generation system with diesel generator, wind turbine, and Battery Energy Storage System (BESS). The existing island area power system consists of only diesel generators. So the grid frequency can be controllable from load change. But hybrid generation system with Renewable Energy Sources (RES) such as wind energy that has the intermittent output can bring power quality problems. BESS is one of the ways to improve the intermittent output of the RES. In this paper, we analyzed the role of BESS in a stand-alone microgrid. We designed a modelling of wind power system with squirrel-cage induction generator, diesel power system with synchronous generator, and BESS using transient analysis program PSCAD/EMTDC. And we analyzed the variation of the grid frequency according to the output of BESS.

소수력 발전소에 적용하는 유도발전기의 동작 특성 (A Study on the Operation Characteristic of Induction Generator in the Small Hydropower Plant)

  • 김영국;김종겸
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.632-638
    • /
    • 2013
  • In this study, we described voltage fluctuation characteristics of distribution line during starting and normal operation condition of the small hydro generators. Based on these theories, we scrutinized the starting and operating characteristics of induction generators installed in two small hydro power plants that is connected to the distribution line and researched necessary factors when selecting the generator type. The type of turbines and capacity of generators are different. One is below 1,000kW and the other is above 1,000kW. Two generators are tested during starting, and it acts as motor not generator at the instant that the machine is connected to the grid. After connecting to the grid, the machine rotates above synchronous speed before converting to the generator mode. Therefore the characteristic of the generator during starting is same as it of motor.

자속 추종을 통한 DFIG 시스템의 LVRT 기법 (LVRT Scheme for Doubly Fed Induction Generator Systems Based on Flux Tracking Method)

  • 박선영;전영환;이동명
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1059-1065
    • /
    • 2013
  • Doubly Fed Induction Generator(DFIG) systems occupy the largest proportion of worldwide wind energy generation market. DFIG systems are very sensitive to grid disturbances especially to voltage dips due to the structure of the stator connected to grid. In the past, when a grid fault occurs generators are separated from grid(trip method) in order to protect the systems. Nowadays, due to the growing penetration level of wind power, many countries have made some requirements that wind turbines are required to have Low Voltage Ride Through(LVRT) capability during grid faults. In this paper, a flux tracking LVRT control strategy based on system modeling equations is proposed. The validity of the proposed strategy is verified through computer simulations.

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.

Adaptive Neural PLL for Grid-connected DFIG Synchronization

  • Bechouche, Ali;Abdeslam, Djaffar Ould;Otmane-Cherif, Tahar;Seddiki, Hamid
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.608-620
    • /
    • 2014
  • In this paper, an adaptive neural phase-locked loop (AN-PLL) based on adaptive linear neuron is proposed for grid-connected doubly fed induction generator (DFIG) synchronization. The proposed AN-PLL architecture comprises three stages, namely, the frequency of polluted and distorted grid voltages is tracked online; the grid voltages are filtered, and the voltage vector amplitude is detected; the phase angle is estimated. First, the AN-PLL architecture is implemented and applied to a real three-phase power supply. Thereafter, the performances and robustness of the new AN-PLL under voltage sag and two-phase faults are compared with those of conventional PLL. Finally, an application of the suggested AN-PLL in the grid-connected DFIG-decoupled control strategy is conducted. Experimental results prove the good performances of the new AN-PLL in grid-connected DFIG synchronization.

인버터 부착형 농형 유도발전기의 계통고장특성 모의 (Grid faults characteristics simulation of inverter-fed induction generator)

  • 홍지태;권순만;김춘경;이종무;천종민;김홍주;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • The detail simulation modeling of fully-fed induction generator is investigated through PC based MATLAB/Simulink environment. Generator's stator currents are controlled by indirect vector control method. In this method, generator side converter controls the maximum excitation (air gap flux) by stator d-axis current and controls generator torque by stator q-axis current. Induction generator speed is controlled by tip speed ratio (TSR) upon the wind speed variations in order to generate the maximum output power. The generator torque model is specified as a 3-blade wind turbine with rating, then, the model is simulated under normal operating condition and three different fault conditions. The matlab model designed for fully-fed induction generator based wind farm provides good performance under normal and grid fault conditions. It provides good results for different pwm techniques and fault conditions except the single-phase line to ground fault, which should be verified with real time data from wind farms.

  • PDF

부하 시험 발전기 전력회수에 관한 연구 (A study on the electric power recovery in generator load test)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.403-408
    • /
    • 2014
  • 조선소에서 건조하고 있는 선박, 해양플랜트에 설치된 발전기의 부하 성능 시험 시 생산되는 막대한 양의 전력은 컨테이너 형태로 제작된 로드뱅크를 통해 전량 열로 낭비된다. 따라서 본 연구에서는 선박 건조 시 발전기 부하시험으로 낭비되는 전력량을 대형 조선소를 대상으로 정량적으로 조사하였으며, 소형발전기에서 생산된 전력을 한전계통에 연계하여 회수하는 실험실의 실험결과를 바탕으로 조선소에서 발전기 부하시험 시 생산되는 전력을 한전계통에 연결할 경우 회수 가능한 전력량을 연구 분석하였다.