• Title/Summary/Keyword: Grid Connected Converter

Search Result 209, Processing Time 0.032 seconds

Cost-Effective Converters for Micro Wind Turbine Systems using PMSG

  • Park, Hong-Geuk;Lee, Dong-Choon;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • This paper proposes a low-cost power converter for micro wind turbine systems using permanent magnet synchronous generators (PMSG). The proposed converter consists of a two-leg three-phase PWM inverter for the generator control and a single-phase half-bridge PWM converter which is connected to the utility grid. For the two separate DC-link voltages, a balancing control is added and the adverse effect of the DC-link voltage ripples on the inverter output voltage is compensated. The control performance of the proposed converter topology for the micro wind turbine system is shown by the simulation results using PSIM software.

Design and verification of Bi-Directional Inverter and Converter using Zinc-Bromine Flow Battery (Zinc - Bromine 플로우 배터리를 이용한 양방향 인버터 및 DC-DC 컨버터 설계 및 실증)

  • Lee, SeungJun;Cho, Younghoon;Lim, Jong-ung;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.389-390
    • /
    • 2015
  • This paper proposes renewable energy system related with flow battery system which is divided into two system, converter and inverter. The Interleaved Boost Converter circuit was used for DC - DC Converter and Full-Bridge Inverter was used for Grid connected Inverter. This paper design each system and uses methods to operate converter and inverter in high efficiency.

  • PDF

Development of Bi-directional Charger With a Wide Voltage Range (넓은 전압 범위를 갖는 양방향 충전기 개발)

  • Na, Jaeho;Park, Jun-Sung;Jeon, Yujong;Shin, Wae-Gyeong;Lee, Chungyoul;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.74-79
    • /
    • 2022
  • This paper proposes a DC-DC converter that satisfies a wide output voltage of 150 V-1000 V for the battery voltage of various electric vehicles and can be controlled in both directions for the demand resource of electric vehicles. The proposed converter is a two-stage structure in which an insulated converter and a non-isolated converter are combined and operates as constant current or constant power depending on the voltage of the connected battery. Experimental results from a 20 kW prototype are provided to validate the proposed charger, and a maximum efficiency of 97% is obtained.

A Control Method to Mitigate the Influence of Input Capacitor in Photovoltaic Power Curtailment (태양광 출력 감발 시 입력 커패시터 영향 완화를 위한 제어 방법)

  • Yang, Hyoung-Kyu;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.106-111
    • /
    • 2021
  • This study proposes a control method to mitigate the influence of input capacitors in photovoltaic power curtailment. The influence is analyzed by the power flow in the photovoltaic system. In conventional power curtailment, the power injected to the grid may be increased momentarily because the influence of the input capacitor on the power injected to the grid is not considered. The proposed method limits the change rate of photovoltaic array voltage to prevent a momentary increase in the power injected to the grid. The effectiveness of proposed method, which reduces power overshoot, is verified by experimental tests. The proposed method enables the power grid to operate stably in photovoltaic power curtailment.

Performance Analysis of Grid Connected Back-to-Back Converter Composed of Multi-pulse Converter and PWM Converter (다중펄스 컨버터와 PWM 컨버터로 구성된 Back-to-Back 컨버터의 계통연계 성능 분석)

  • Jeong, Jong-Kyou;Shim, Myong-Bo;Lee, Hye-Yeon;Han, Byung-Moon;Han, Young-Seong;Chung, Chung-Choo;Chang, Byung-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.451-459
    • /
    • 2010
  • This paper describes the performance comparison results for a hybrid back-to-back converter, which is composed of a 3-level 24-pulse converter and a 3-level PWM converter, in order to interconnect a large scale wind farm with the power grid. Also it describes the performance comparison results when the 24-pulse converter operates in only firing-angle control, and both firing-angle and the zero-voltage control. For the purpose of systematic performance comparison, computer simulations with PSCAD/EMTDC software were carried out, and based on simulation results a scaled hardware model with 2 kVA rating was built and tested.

A Study on Grid-connected Photovoltaic Current-Source Inverter using Parallel Connection (병렬연결을 이용한 계통연계형 태양광 전류형 인버터에 관한 연구)

  • Lim, Joung-Min;Cheang, Eui-Heang;Moon, Chae-Joo;Chang, Young-Hak;Kim, Eui-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1222-1223
    • /
    • 2007
  • This paper suggests a 6-pulse-shift converter with PWM current-source inverter based on buck-boost configuration to improve the efficiency and to reduce the switching frequency of inverter for photovoltaic generation system, the device can be operated as interface system between solar module system and power system grid without energy storage cell. the circuit has six current-source buck-boost converter which operate chopper part has one full bridge inverter which make a decision the polarity of AC output. Therefore, the proposed PWM power inverter has advantages such as the reduction of witching loss and realization of unity power factor operation. the theoretical backgrounds are discussed and the input-output characteristics for the implemented prototype inverter using TMS320F2812 are verified experimentally in this paper.

  • PDF

A Resonant Characteristics Analysis and Suppression Strategy for Multiple Parallel Grid-connected Inverters with LCL Filter

  • Sun, Jian-jun;Hu, Wei;Zhou, Hui;Jiang, Yi-ming;Zha, Xiao-ming
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1483-1493
    • /
    • 2016
  • Multiple parallel inverters have multiple resonant frequencies that are influenced by many factors. This often results in stability and power quality problems. This paper develops a multiple input multiple output model of grid-connected inverter systems using a closed-loop transfer function. The influence factors of the resonant characteristics are analyzed with the developed model. The analysis results show that the resonant frequency is closely related to the number, type and composition ratio of the parallel inverters. To suppress resonance, a scheme based on virtual impedance is presented, where the virtual impedance is emulated in the vicinity of the resonance frequency. The proposed scheme needs one inverter with virtual impedance control, which reduces the design complexity of the other inverter controllers. Simulation and experimental tests are carried out on two single phase converter-based setups. The results validate the correctness of the model, the analytical results and the resonant suppressing scheme.

Classification of Grid Connected Transformerless PV Inverters with a Focus on the Leakage Current Characteristics and Extension of Topology Families

  • Ozkan, Ziya;Hava, Ahmet M.
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.256-267
    • /
    • 2015
  • Grid-connected transformerless photovoltaic (PV) inverters (TPVIs) are increasingly dominating the market due to their higher efficiency, lower cost, lighter weight, and reduced size when compared to their transformer based counterparts. However, due to the lack of galvanic isolation in the low voltage grid interconnections of these inverters, the PV systems become vulnerable to leakage currents flowing through the grounded star point of the distribution transformer, the earth, and the distributed parasitic capacitance of the PV modules. These leakage currents are prohibitive, since they constitute an issue for safety, reliability, protection coordination, electromagnetic compatibility, and module lifetime. This paper investigates a wide range of multi-kW range power rating TPVI topologies and classifies them in terms of their leakage current attributes. This systematic classification places most topologies under a small number of classes with basic leakage current attributes. Thus, understanding and evaluating these topologies becomes an easy task. In addition, based on these observations, new topologies with reduced leakage current characteristics are proposed in this paper. Furthermore, the important efficiency and cost determining characteristics of converters are studied to allow design engineers to include cost and efficiency as deciding factors in selecting a converter topology for PV applications.

The Grid Connected Characteristics of 1.2kW Fuel-cell Converter (1.2kW급 연료전지의 전력변환기의 연계 특성)

  • Liao, Dan-Jian;Son, Gyoung-Jong;Cho, Su-Eog;Park, Sung-Jun;Choi, Joon-Ho;Moon, Chae-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.438-440
    • /
    • 2007
  • This paper shows a new kind of push-pull switching converter for fuel-cell system and analyses the connected characteristics of it. In these characteristics, we are concerned about the high harmonic rate of output current, we also have designed the filter system for the inverter. Besides, the characteristics should be certified better if the ripple of the fuel-cell output current has been eliminated.

  • PDF

FPGA based POS MPPT Control for a Small Scale Charging System of PV-nickel Metal Hydride Battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Guen;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.80-84
    • /
    • 2012
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.