• Title/Summary/Keyword: Grey System Theory

Search Result 18, Processing Time 0.025 seconds

Evaluation of Vehicle and Pedestrian Environments using Grey System Theory (Grey System Theory를 이용한 차량 및 보행환경 통합평가)

  • Lee, Jin-Gak;Son, Yeong-Tae;Han, Sang-Jin;Park, Jin-Yeong;Lee, Sang-Hwa
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.141-156
    • /
    • 2010
  • In this paper, understanding there is a limitation with a comprehensive and network approach for the evaluation of existing vehicle and pedestrian environments, the authors focus on developing an integrated approach to assessing these environments. The network evaluation here means the assessment at a three-dimensional level that includes evaluation methods of lines/axes in a spatial concept as well as integration of evaluation indicators being used for vehicles and the walking environment. Grey System Theory (GST) was applied based on the theoretical background for network and comprehensive integrated evaluation, and the evaluation of the vehicle and pedestrian environment was performed by assigning target areas to walking preference zones. As a result of the comprehensive evaluation and analysis by GST, even if the service level is the same as the operating indicators (Highway Capacity Manual) of the vehicle and pedestrian environment, or relatively better, it was identified that the total score could be varied over Grey Category because the observed data are calculated after considering the weights between evaluation indicators by the range of Grey Category on the comprehensive evaluation. Considering comprehensively these points, although the indicators on the operation of roads are relatively good, in the event that the indicators on the safety of roads are bad, it was known that the scores over Grey Category also could be changed. The result is that this evaluation method can be used to evaluate the network concept per lane (per axis) as well as to diagnose the current state by type of urban street in the future.

A Modified Grey-Based k-NN Approach for Treatment of Missing Value

  • Chun, Young-M.;Lee, Joon-W.;Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.421-436
    • /
    • 2006
  • Huang proposed a grey-based nearest neighbor approach to predict accurately missing attribute value in 2004. Our study proposes which way to decide the number of nearest neighbors using not only the deng's grey relational grade but also the wen's grey relational grade. Besides, our study uses not an arithmetic(unweighted) mean but a weighted one. Also, GRG is used by a weighted value when we impute missing values. There are four different methods - DU, DW, WU, WW. The performance of WW(Wen's GRG & weighted mean) method is the best of any other methods. It had been proven by Huang that his method was much better than mean imputation method and multiple imputation method. The performance of our study is far superior to that of Huang.

  • PDF

A Study on the Treatment of Missing Value using Grey Relational Grade and k-NN Approach

  • Chun, Young-Min;Chung, Sung-Suk
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.55-62
    • /
    • 2006
  • Huang proposed a grey-based nearest neighbor approach to predict accurately missing attribute value in 2004. Our study proposes which way to decide the number of nearest neighbors using not only the dong's grey relational grade but also the wen's grey relational grade. Besides, our study uses not an arithmetic(unweighted) mean but a weighted one. Also, GRG is used by a weighted value when we impute a missing values. There are four different methods - DU, DW, WU, WW. The performance of WW(wen's GRG & weighted mean) method is the best of my other methods. It had been proven by Huang that his method was much better than mean imputation method and multiple imputation method. The performance of our study is far superior to that of Huang.

  • PDF

An optimal classification method for risk assessment of water inrush in karst tunnels based on grey system theory

  • Zhou, Z.Q.;Li, S.C.;Li, L.P.;Shi, S.S.;Xu, Z.H.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.631-647
    • /
    • 2015
  • Engineers may encounter unpredictable cavities, sinkholes and karst conduits while tunneling in karst area, and water inrush disaster frequently occurs and endanger the construction safety, resulting in huge casualties and economic loss. Therefore, an optimal classification method based on grey system theory (GST) is established and applied to accurately predict the occurrence probability of water inrush. Considering the weights of evaluation indices, an improved formula is applied to calculate the grey relational grade. Two evaluation indices systems are proposed for risk assessment of water inrush in design stage and construction stage, respectively, and the evaluation indices are quantitatively graded according to four risk grades. To verify the accuracy and feasibility of optimal classification method, comparisons of the evaluation results derived from the aforementioned method and attribute synthetic evaluation system are made. Furthermore, evaluation of engineering practice is carried through with the Xiakou Tunnel as a case study, and the evaluation result is generally in good agreement with the field-observed result. This risk assessment methodology provides a powerful tool with which engineers can systematically evaluate the risk of water inrush in karst tunnels.

Dynamic fracture catastrophe model of concrete beam under static load

  • Chen, Zhonggou;Fu, Chuanqing;Ling, Yifeng;Jin, Xianyu
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.517-523
    • /
    • 2020
  • An experimental system on three point bending notched beams was established to study the fracture process of concrete. In this system, the acoustic emission (AE) was used to build the cumulative generation order (AGO) and dynamically track the process of microcrack evolution in concrete. A grey-cusp catastrophe model was built based on AE parameters. The results show that the concrete beams have significant catastrophe characteristic. The developed grey-cusp catastrophe model, based on AGO, can well describe the catastrophe characteristic of concrete fracture process. This study also provides a theoretical and technical support for the application of AE in concrete fracture prediction.

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam (담수호 홍수관리를 위한 상류 유입량 실시간 예측)

  • Kang, Min-Goo;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1061-1072
    • /
    • 2005
  • A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.

Assessing the Unemployment Problem Using A Grey MCDM Model under COVID-19 Impacts: A Case Analysis from Vietnam

  • NGUYEN, Phi-Hung;TSAI, Jung-Fa;NGUYEN, Hong-Phuc;NGUYEN, Viet-Trang;DAO, Trong-Khoi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.53-62
    • /
    • 2020
  • The COVID 19 pandemic has led to a new global recession and is still causing a lot of issues because of the delays in the employment of people. This scenario has severe consequences for many countries' labor markets in the world. This problem's complexity and importance requires an integrated method of subjective and objective evaluation rather than intuitive decisions. This research aims to investigate sustainable indexes for assessing the unemployment problem by using a Multi-Criteria Decision-Making Model (MCDM). Grey theory and Decision Making Trial and Evaluation Laboratory (GDEMATEL) are deployed to transform the experts' opinions into quantitative data. The analysis based on 20 crucial criteria is employed to determine the weights of sustainability of unemployment problems. The results revealed that the top ten of determinants are Economic growth, Industrialization, Foreign direct investment, Real GDP per capita, Education level, Trade Openness, Capacity Utilization Rate, Urbanization, Employability skills, Education system expansion, which have the most significant effects on the unemployment rate under COVID 19 impacts. Furthermore, GDEMATEL could effectively assess the sustainable indicators for unemployment problems in "deep and wide" aspects. The study proposes the Grey MCDM model, contributes to the literature, provides future research directions, and helps policymakers and researchers achieve the best solutions to the unemployment problems under "economic shocks."

Comprehensive Evaluation of Freeway Surface Conditions based on User's Satisfaction (이용자 만족도를 고려한 고속도로 노면상태 종합평가에 관한 연구)

  • Son, Young-Tae;Lee, Jin-Kak;Lee, Shin-Ra;Jung, Chul-Gie
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.37-47
    • /
    • 2010
  • This research is aimed at comprehensively evaluating the condition of a road surface of a highway in satisfaction of its users. This research conducted an overall evaluation of a road surface condition by adding qualitative data, or a driver's satisfaction to the existing quantitative elements, whereas the existing research put its focus on a correlation analysis with quantitative factors and qualitative factors through a statistical method. As for an evaluation method, this research conducted an overall evaluation by using Grey System Theory which makes possible an integrated evaluation. The analyzed results make it possible to diagnose the current conditions of each section of object roads and to predict the potentially changeable conditions for the time to come. In addition, these analyzed results could hopefully be applied to the maintenance of freeways through diverse methods. It is hoped that the evaluation of a road surface condition of a highway in satisfaction of its user could be helpful to keeping up the satisfaction of a driver and passenger on the highway by more than a certain level. In addition, the analyzed data on the influence of data value observed by comprehensively evaluating a variety of elements could be used as a secondary means of the decision-making process in relation to road maintenance. On top of that, it could be used as a means of improving road maintenance system and offering the improved driving environment of the highway.

Real-Time Forecasting of Flood Discharges Upstream and Downstream of a Multipurpose Dam Using Grey Models (Grey 모형을 이용한 다목적댐의 유입 홍수량과 하류 하천 홍수량 실시간 예측)

  • Kang, Min-Goo;Cai, Ximing;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.61-73
    • /
    • 2009
  • To efficiently carry out the flood management of a multipurpose dam, two flood forecasting models are developed, each of which has the capabilities of forecasting upstream inflows and flood discharges downstream of a dam, respectively. The models are calibrated, validated, and evaluated by comparison of the observed and the runoff forecasts upstream and downstream of Namgang Dam. The upstream inflow forecasting model is based on the Grey system theory and employs the sixth order differential equation. By comparing the inflows forecasted by the models calibrated using different data sets with the observed in validation, the most appropriate model is determined. To forecast flood discharges downstream of a dam, a Grey model is integrated with a modified Muskingum flow routing model. A comparison of the observed and the forecasted values in validation reveals that the model can provide good forecasts for the dam's flood management. The applications of the two models to forecasting floods in real situations show that they provide reasonable results. In addition, it is revealed that to enhance the prediction accuracy, the models are necessary to be calibrated and applied considering runoff stages; the rising, peak, and falling stages.

Integrated Evaluation of Level of Service for Urban Streets Considering Sustainability (지속가능성을 고려한 도시부 도로의 서비스수준 통합 평가 연구)

  • Choi, Yongseok;Kim, Eungcheol
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.75-84
    • /
    • 2012
  • PURPOSES : This paper aims to improve the evaluation method of the Level of Service(LOS) for urban streets presented by the current Korean Highway Capacity Manual(KHCM) and suggest its utilization plan as a part of the methods to evaluate the sustainability of a transportation policy. METHODS : This paper carried out a research in 3 steps to develop a new evaluation method. First of all, this paper reviewed the previous studies related to the LOS of urban streets and the socially requested items for a sustainable transportation system. Then this paper derived an index and weight through expert questions to select an evaluation index. Lastly, this paper compared the results according to the existing evaluation methods with the new evaluation methods through case studies. This paper used an Analytic Hierarchy Process(AHP) for importance analysis and weight selection between new evaluation items and indices, and applied a Grey System Theory(GST) for a synthetic and integrated evaluation between the selected evaluation indices. RESULTS : As a result of evaluating the LOS according to the existing evaluation methods and the integrated evaluation methods using a GST through case studies, it was analyzed that new methods' results are less than or equal to the existing evaluation methods; and as a result of applying a weight between evaluation indices according to AHP, it was noticed that the total score seems to rise more when the LOS in the existing evaluation is calculated lower. It was analyzed that the LOS calculated by reflecting the newly established evaluation items and the importance between indices in this study has difference from the LOS of the existing urban streets. CONCLUSIONS : It is expected that this evaluation method can diagnose the current conditions when establishing a future sustainable traffic system and can be used for the measurement of the sustainability effects of the improvement plans and so on.