• Title/Summary/Keyword: Greenhouse soil

Search Result 886, Processing Time 0.026 seconds

Effect of Weathering of Bottom Ash on Mitigation of Green House Gases Emission from Upland Soil (밭토양에서 저회의 풍화가 온실가스 배출 저감에 미치는 영향)

  • Heo, Do Young;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • BACKGROUND: Weathering of bottom ash (BA) might induce change of its surface texture and pH and affect physical and chemical properties of soil associated with greenhouse gas emission, when it is applied to the arable soil. This study was conducted to determine effect of weathering of BA in mitigating emission of greenhouse gases from upland soil. METHODS AND RESULTS: In a field experiment, methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) emitted from the soil was periodically monitored using closed chamber. Three month-weathered BA and non-weathered BA were applied to an upland soil at the rates of 0, 200 Mg ha-1. Maize (Zea mays L.) was grown from July 1st to Oct 8th in 2018. Both BAs did not affect cumulative CH4 emission. Cumulative CO2 emission were 23.1, 19.8, and 18.8 Mg/ha/100days and cumulative N2O emission were 35.8, 20.9, and 17.7 kg/ha/100days for the control, non-weathered BA, and weathered BA, respectively. Weathering of BA did not decrease emission of greenhouse gases significantly, compared to the weathered BA in this study. In addition, both BAs did not decrease biomass yields of maize. CONCLUSION: BA might be a good soil amendment to mitigate emissions of CO2 and N2O from arable soil without adverse effect on crop productivity.

A Study on the Potential Contribution of Soil Seed Bank to the Revegetation (토양시드뱅크에 의한 식생복원 가능성에 관한 연구)

  • Koh, Jeung-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.6
    • /
    • pp.99-109
    • /
    • 2007
  • The main objectives of this comparative study were 1) to compare the floristic similarity of species composition between the extant vegetation and seedlings from soil seed bank and 2) to quantify the potential contribution of soil seed bank to revegetation of forest in a constructed area, which is called "ecological impact mitigation" in conjunction with the power plant extension. Forest topsoil of seven plots was collected from the surface soil after measurements were taken on the ground vegetation in each plot. A greenhouse experiment was conducted and monitored to analyze the germination potential of soil seed bank. The forest topsoil was spread on plastic trays ($0.7m^2{\times}7$) filled with a 5cm layer of sterilized potting mix. The results of monitoring for 2 years in a greenhouse were as follows : 1) seedlings of soil seed bank per 4.9$m^2$ were 1,269 with 36 species (1st year) and 2,615 with 25 species (2nd year). 2) 38${\pm}$8% of the flora species were germinated from soil seed bank. It can be concluded that the use of soil seed bank would be effective to promote establishment of diverse species and vegetation. However, it behooves to continue monitoring on succession of vegetation and pursue revegetation with other methods for ecological restoration. Finally, adequate topsoil deposit and gathering methods should be studied properly.

Evaluation of Streptomyces saraciticas as Soil Amendments for Controlling Soil-Borne Plant Pathogens

  • Wu, Pei-Hsuan;Tsay, Tung-Tsuan;Chen, Peichen
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.596-606
    • /
    • 2021
  • Soil-borne diseases are the major problems in mono cropping. A mixture (designated LTM-m) composed of agricultural wastes and a beneficial microorganism Streptomyces saraceticus SS31 was used as soil amendments to evaluate its efficacy for managing Rhizoctonia solani and root knot nematode (Meloidogyne incognita). In vitro antagonistic assays revealed that SS31 spore suspensions and culture broths effectively suppressed the growth of R. solani, reduced nematode egg hatching, and increased juvenile mortality. Assays using two Petri dishes revealed that LTM-m produced volatile compounds to inhibit the growth of R. solani and cause mortality to the root knot nematode eggs and juveniles. Pot and greenhouse tests showed that application of 0.08% LTM-m could achieve a great reduction of both diseases and significantly increase plant fresh weight. Greenhouse trials revealed that application of LTM-m could change soil properties, including soil pH value, electric conductivity, and soil organic matter. Our results indicate that application of LTM-m bio-organic amendments could effectively manage soil-borne pathogens.

Dynamics of Functional Genes and Bacterial Community during Bioremediation of Diesel-Contaminated Soil Amended with Compost

  • Hyoju Yang;Jiho Lee;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.471-484
    • /
    • 2023
  • Compost is widely used as an organic additive to improve the bioremediation of diesel-contaminated soil. In this study, the effects of compost amendment on the remediation performance, functional genes, and bacterial community are evaluated during the bioremediation of diesel-contaminated soils with various ratios of compost (0-20%, w/w). The study reveals that the diesel removal efficiency, soil enzyme (dehydrogenase and urease) activity, soil CH4 oxidation potential, and soil N2O reduction potential have a positive correlation with the compost amendment (p < 0.05). The ratios of denitrifying genes (nosZI, cnorB and qnorB) to 16S rRNA genes each show a positive correlation with compost amendment, whereas the ratio of the CH4-oxidizing gene (pmoA) to the 16S rRNA genes shows a negative correlation. Interestingly, the genera Acidibacter, Blastochloris, Erythrobacter, Hyphomicrobium, Marinobacter, Parvibaculum, Pseudoxanthomonas, and Terrimonas are strongly associated with diesel degradation, and have a strong positive correlation with soil CH4 oxidation potential. Meanwhile, the genera Atopostipes, Bacillus, Halomonas, Oblitimonas, Pusillimonas, Truepera, and Wenahouziangella are found to be strongly associated with soil N2O reduction potential. These results provide useful data for developing technologies that improve diesel removal efficiency while minimizing greenhouse gas emissions in the bioremediation process of diesel-contaminated soil.

Comparison of Soil Chemical Properties in Greenhouse or Open Field Where Flower Crops were Cultivated from 2018 to 2020 (화훼작물이 재배된 온실 또는 노지재배지의 토양 화학성 비교)

  • Kwon, Hye Sook;Heo, Seong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.675-685
    • /
    • 2022
  • A comparative analysis was performed on the soil chemical properties of greenhouse or open field where flower crops were grown from 2018 to 2020. The pH of greenhouse soils was kept slightly higher than the optimum range suggested by Rural Development Administration and that of open field soils was maintained within the optimum range for three years. The contents of organic matter (OM) were within the optimum range without significant change every year in both soils. Available phosphate (Av. P2O5) of greenhouse soils was the highest at 560 mg/kg in 2018, but it decreased every year and fell within the appropriate range in 2020. The concentration of Av. P2O5 in open field soils have fluctuated for three years, not showing a significant difference. Electrical conductivity (EC) of greenhouse soils was higher every year than the standard, 2.0 dS/m, but EC of open field soils remained below the standard. The contents of exchangeable cations were higher than the standard, showing significant differences among the years in greenhouse soils. In open field soils, other cations except exchangeable K+ were maintained higher than the optimal level and only Ca2+ showed a significant difference among the years. In Pearson correlation matrices, the value of exchangeable Ca2+ had a significantly positive correlation with exchangeable Mg2+ content at both greenhouse and open field soils. Based on principal component analysis, the soils of greenhouse were distributed within the range of high concentrations of Av. P2O5, EC and exchangeable cations, while the soils of open field were characterized by low contents of OM and exchangeable cations. Therefore, it is essential to lower the concentration of exchangeable cations in greenhouse soils. It is common for the soils of open field to have a low OM content, so that organic fertilizers should be more actively applied to the soils in open field.

Susceptibility to Calonectria ilicicola in Soybean Grown in Greenhouse and Field

  • Kim, K. D.;Russin, J. S.;Snow, J. P.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.239-244
    • /
    • 1998
  • Susceptibility of soybean cultivars to Calonectria illicicola was evaluated in a greenhouse by inoculating seedlings with mycelium in agar discs placed on the stems at the soil line. A range of responses was detected among cultivars following inoculation with a virulent isolate of C.ilicicola. Rankings of cultivars between greenhouse tests 1 and 2 were similar for disease severity and areas under the disease progress curves (AUDPC). In addition, rankings of cultivars for Final disease severity were highly correlated with AUDPC in test 1 ($r_s$ =0.88, t =5.48, p<0.001), test 2 ($r_s$ =0.99, t =22.10, p<0.001), and when tests were combined ($r_s$=0.89, t=5.82, p<0. 001). Final disease severity and AUDPC consistently identified Asgrow 7986, Braxton, Cajun, and Forrest as soybean cultivars least susceptible to red crown rot. In 1993 and 1994 field tests, a range in disease susceptibility was observed for tested cultivars but none was completely resistant. Soybean cultivars Braxton, Cajun, and Forrest, which were least susceptible to red crown rot in greenhouse tests, also ranked among cultivars with the lowest disease incidence and AUDPC in field tests. Comparisons .between rankings of the eight cultivars common to greenhouse and field tests showed a correlation between final disease severity from combined greenhouse tests and both final disease incidence ($r_s$=0.63, t =1.99, p<0.1) and AUDPC ($r_s$=0.60, t =1.82, p < 0.2) from the combined field tests. However, AUDPC from greenhouse tests did not correlate with either final disease incidence or AUDPC from field tests. The green-house screening method provided consistent results between greenhouse and field tests and successfully identified the least susceptible cultivars Braxton, Cajun, and Forrest.

  • PDF

A Design and Implementation of Multimedia Pest Prediction Management System using Wireless Sensor Network (무선 센서 네트워크를 이용한 멀티미디어 병해충 예측 관리 시스템 설계 및 구현)

  • Lim, Eun-Cheon;Shin, Chang-Sun;Sim, Chun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2007
  • The majority of farm managers growing the garden products in greenhouse concern massively about the diagnosis and prevention of the breeding and extermination for pests. especially, the managing problem for pests turns up as main issue. In the paper, we first build a wireless sensor network with soil and environment sensors such as illumination, temperature and humidity. And then we design and implement multimedia pest predication and management system which is able to predict and manage various pest of garden products in greenhouse. The proposed system can support the database with information about the pests by building up wireless sensor network in greenhouse compared with existing high-priced PLC device as well as collect various environment information from soil, the interior of greenhouse, and the exterior of greenhouse. To verify the good capability of our system, we implemented several GUI interface corresponding desktop. web, and PDA mobile platform based on real greenhouse model. Finally, we can confirm that our system work well prediction and management of pest of garden products in greenhouse based on several platforms.

  • PDF

Effect of Continuous Biochar Use on Soil Chemical Properties and Greenhouse Gas Emissions in Greenhouse Cultivation (시설재배지에서 바이오차 연용이 토양의 화학적 특성 및 온실가스 배출에 미치는 효과)

  • Jae-Hyuk Park;Dong-Wook Kim;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.435-443
    • /
    • 2023
  • Global concern over climate change, driven by greenhouse gas emissions, has prompted widespread interest in sustainable solutions. In the agricultural sector, biochar has emerged as a focal point for mitigating these emissions. This study investigated the impact of continuous biochar application on CO2 and N2O emissions during the spring cabbage cultivation period. Greenhouse gas emissions in the biochar treatment groups (soils treated with 1, 3, and 5 tons/ha of rice husk biochar) were compared to those in the control group without biochar. During the spring cabbage cultivation period in 2022, the total CO2 emissions were in the range of 71.6-119.0 g/m2 day, and in 2023, with continuous biochar application, they were in the range of 71.6-102.1 g/m2 day. The total emissions of N2O in 2022 and 2023 were in the range of 11.7-23.7 and 7.8-19.9 g/m2 day, respectively. Overall, greenhouse gas emissions decreased after biochar treatment, confirming the positive influence of biochar on mitigating greenhouse gas release from the soil. Nevertheless, further research over an extended period exceeding five years is deemed essential to delve into the specific mechanisms behind these observed changes and to assess the long-term sustainability of biochar's impact on greenhouse gas dynamics in agricultural settings.

Annual Greenhouse Gas Removal Estimates of Grassland Soil in Korea

  • Lee, Sang Hack;Park, Hyung Soo;Kim, Young-Jin;Kim, Won Ho;Sung, Jung Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.251-256
    • /
    • 2015
  • The study was conducted to determine greenhouse gas (GHG) inventories in grasslands. After 'Low Carbon Green Growth' was declared a national vision on 2008, Medium-term greenhouse gas reduction was anticipated for 30% reduction compared to Business As Usual (BAU) by 2020. To achieve the reduction targets and prepare to enforce emissions trading (2015), national GHG inventories were measured based on the 1996 Intergovernmental Panel on Climate Change Guidelines (IPCC GL). The national Inventory Report (NIR) of Korea is published every year. Grassland sector measurement was officially added in 2014. GHG removal of grassland soil was measured from 1990 to 2012. Grassland area data of Korea was used for farmland area data in the "Cadastral Statistical Annual Report (1976~2012)". Annual grassland area corresponding to the soil classification was used "Soil classification and commentary in Korea (2011)". Grassland area was divided into 'Grassland remaining Grassland' and 'Land converted to Grassland'. The accumulated variation coefficient was assumed to be the same without time series changes in grassland remaining grassland. Therefore, GHG removal of soil carbon was calculated as zero (0) in grassland remaining grassland. Since the grassland area increases constantly, the grassland soil sinks constantly . However, the land converted to grassland area continued to decrease and GHG removal of soil carbon was reduced. In 2012 (127.35Gg $CO_2$), this removal decreased by 76% compared to 1990 (535.71 Gg $CO_2$). GHG sinks are only grasslands and woodlands. The GHG removaled in grasslands was very small, accounting for 0.2% of the total. However, the study provides value by identifying grasslands as GHG sinks along with forests.

Assessment of Heavy Metal Concentrations in Greenhouse Soils of Gyeongnam Province

  • Son, Daniel;Cho, Hyeon-Ji;Heo, Jae-Young;Lee, Byeong-Jeong;Hong, Kwang-Pyo;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.383-390
    • /
    • 2017
  • Heavy metal contamination of soil might be a cause of serious concern due to the potential health impacts of consuming contaminated products. In this study, the total content of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg) in soils was analyzed, and the difference of heavy metal contents depending on crops, soil characteristics, and topography was compared in 169 greenhouse soils obtained from Gyeongnam Province. The concentrations of the heavy metals were $0.25mg\;kg^{-1}$ (ranged 0.01~0.44) for Cd, $28.94(0.53{\sim}72.63)mg\;kg^{-1}$ for Cr, $26.03(0.5{\sim}166.13)mg\;kg^{-1}$ for Cu, $14.91(1.27{\sim}33.22)mg\;kg^{-1}$ for Ni, $15.76(0.43{\sim}57.1)mg\;kg^{-1}$ for Pb, $119.72(6.33{\sim}239.39)mg\;kg^{-1}$ for Zn, $2.54(0.01{\sim}23.57)mg\;kg^{-1}$ for As, and $0.049(0.012{\sim}0.253)mg\;kg^{-1}$ for Hg in topsoils. The concentrations of Pb and As in topsoil were highest in green pepper and those of Cd, Cr, and Ni were highest in melon. In addition, the concentrations of Cr and Ni were highest in diluvial terrace compared with the other topographies. Higher concentrations of Cd, Cr, and Ni were found in silty clay loam and silt loam soils than sandy loam and loam soils.