• Title/Summary/Keyword: Greenhouse monitoring system

Search Result 118, Processing Time 0.024 seconds

Comparison of the CO2 Emission Estimation Methods in a LNG Power Plant Based on the Mass Balance Approach (물질수지 방법을 고려한 액화천연가스 발전소에서의 온실기체 배출량 산정 방법 비교)

  • Kim, Hee-Jin;Yeo, Min Ju;Kim, Yong Pyo;Jang, Geon Woo;Shin, Won Geun;Lee, Myung Hwoon;Choi, Hyung Wook
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.235-244
    • /
    • 2013
  • Carbon dioxide emission estimation methods consist of four tiers according to the IPCC guideline. In this study, estimated results by tier 3 and tier 4 were compared with the theoretically calculated $CO_2$ emissions based on the mass balance approach for a gas fired power plant between March and May 2011. It was found that the relative differences were upto 17% between the measured emissions by tier 4 and theoretically estimated emissions, while the results of tier 3 were similar to those from theoretically estimated ones. The comparisons suggested the possibility of misestimation due to replacing missing, abnormal, or invalid data in continuous emissions monitoring system. When using only the data without those missing, abnormal, or invalid data, the relative differences decreased somewhat but still showed consistent differences depending on the stack. It is suggested that this differences might be due to the accuracy of the measurement instruments for the tier 4, especially, for the flow rate measurement instrument.

Restoration of endangered orchid species, Dendrobium moniliforme (L.) Sw. (Orchidaceae) in Korea (멸종위기 난과 식물 석곡의 복원)

  • Kim, Young-kee;Kang, Kyung-Won;Kim, Ki-Joong
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.256-266
    • /
    • 2016
  • A total of 13,000 individuals of Dendrobium moniliforme (L.) Sw. artificially propagated in laboratories and greenhouses were restored in their natural habitat of Bogildo Island, Wandogun, in the southern part of Korea in June of 2013. The growing conditions of the individuals were monitored for two years. The parental individuals for the restoration were obtained from a wild population in southern Korea, from which seeds were produced via artificial crossings. These seeds were germinated and cultivated in growing media and two-year-old plants were then grown in greenhouse beds. The genetic diversity among the propagated individuals was confirmed by examining DNA sequences of five regions of the chloroplast genome and the nuclear ITS region. The diversity values were as high as the average values of natural populations. All propagated individuals were transplanted into two different sites on Bogildo by research teams with local residents and national park rangers. After restoration, we counted and measured the surviving individuals, vegetative propagated stems, and growth rates in June of both 2014 and 2015. There was no human interference, and 97% of the individuals survived. The number of propagules increased by 227% in two years. In contrast, the average length of the stems decreased during the period. In addition, different survival and propagation rates were recorded depending on the host plants and the restored sites. The shaded sides of rock cliffs and the bark of Quercus salicina showed the best propagation rates, followed by the bark of Camellia japonica. A few individuals of D. moniliforme successfully flowered, pollinated, and fruited after restoration. Overall, our monitoring data over two years indicate that the restored individuals were well adapted and vigorously propagated at the restored sites. In order to prevent human disturbance of the restored sites, a CCTV monitoring system powered by a solar panel was installed after the restoration. In addition, a human surveillance system is operated by national park rangers with local residents.

Diagnosis of Irrigation Time Based on Microchange of Stem Diameter in Greenhouse Tomato (온실재배 토마토의 농직경 변화에 의한 관개시기 진단)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.250-257
    • /
    • 1997
  • Stem diameter and shoot fresh weight of tomato grown in greenhouse were measured non-destructively at 10 minutes interval from 1 to 16 July, 1996 with displacement detector using strain gauges and with suspension-type load cell, respectively, and simultaneously were measured soil water potential, transpiration and solar radiation. Ample water was irrigated before experiment, and thereafter, irrigations were made on the next morning when visual symptoms of wilting appeared. Shoot fresh weight and stem diameter showed very similar patterns in diurnal changes which are characterized by predawn maximum and afternoon minimum and in long- term evolutions, suggesting that stem diameter shrinkage and expansion are closely related to plant water content and growth, respectively, Shoot weight and stem diameter reached minimum values a little later than the time on which transpiration showed maximum. The daily net gains of fresh weight(DG) and stem diameter(DI) showed significantly Positive correlations with solar radiation in those days on which plants were not water-stressed. However, Dl and DG on those days of water stress showed much lower values than expected from the relationships between solar radiation and them. Transpiration was much lower than the expected potential transpiration on 10 July, implying that plants were water-stressed. In this case water stress was not detected from visual symptom of wilting and/or soil water potential, but was able to be identified by the lower DI and DG than the expected. The maximum contraction of stem diameter(MC) and the maximum loss of fresh weight(ML) during daytime showed significantly positive correlations with solar radiation in those days on which plants were not water-stressed and were observed greater than expected from the relationships on severely water-stressed days. But mild water stress could not be discernable by ML and MC. It would be concluded that the daily net gains of fresh weight and/or stem diameter could be used as criteria for diagnosing the water status of tomato and for triggoring the onset of irrigation in automatic system.

  • PDF

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

The control effect of some fungicides against cucumber sclerotinia rot and the sensitivity of sclerotinia isolates to fungicides (오이 균핵병에 대한 몇 가지 살균제의 방제 효과와 살균제에 대한 균핵병균의 감수성 정도 조사)

  • Kim, Myeong-Ok;Min, Ji-Young;Choi, Woo-Bong;Kang, Beum-Kwan;Park, Sung-Woo;Choi, Gyung-Ja;Park, Chang-Sik;Cho, Kwang-Yun;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • As Sclerotinia sclerotiorum causing cucumber sclerotinia rot was the fastest in the mycelial growth at $25^{\circ}C$, its pathogenicity was strong at the same temperature among several temperatures. All the isolates of Sclerotinia sclerotiorum showed a strong pathogenicity against cucumber fruits, which was confirmed by a disk assay and a wound assay. A wound assay was superior to a disk assay to develop the assay system for assessing the fungicidal activity of several fungicides against Sclerotinia sclerotiorum. In a disk assay, it was very difficult to assess the fungicidal activity, because the pathogenicity of isolates used in the experiment was very strong. At 500 and $3.0{\mu}g/mL$, the activity of dichloflouanid and the mixture of carbendazim and diethofencarb against cucumber sclerotinia rot was 14.3 and 42.3%, respectively, by using a disk assay. However, at same concentration two fungicides showed the high controlling activity as 100 and 92.5%, through a wound assay in a laboratory. Also, the activity of two fungicides was good against cucumber sclerotinia rot in the greenhouse where cucumber plants were cultivated in the field, showing the control value as 91.1 and 82.9% at 100 and $825{\mu}g/mL$, respectively. All the isolates of Sclerotinia sclerotiorum from cucumber fruits sampled in the polyvinyl house were subjected to monitoring for the resistance to 7 fungicides. The $EC_{50}$ value of 7 fungicides was as follows: fenhexamid; $0.13{\mu}g/mL$, procymidon and iprodione; 0.18 and $0.24{\mu}g/mL$, carbendazim and the mixture of carbendazim and diethofencarb; 0.13과 $0.05{\mu}g/mL$, iminoctadine and dichlofluanid; 1.94 and $8.95{\mu}g/mL$. Ultimately it was not found that resistant isolates of Sclerotinia sclerotiorum were appeared in the field.

An Exploratory Study on the Barriers of Greenhouse Gas (GHG) Reduction Policy in the Agricultural Sector through Semi-Structured Interviews (반구조화 인터뷰를 통한 농업부문 온실가스 감축정책의 방해 요인에 관한 탐색적 연구)

  • Sung Eun Sally Oh;Yun Yeong Choi;Hyunji Lee;Jihun Paek;Brian Hong Sok Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • As the Intergovernmental Panel on Climate Change (IPCC) emphasized the transition to a carbon-neutral society globally by 205 0, major countries such as Korea, Japan, and Europe declared carbon-neutral goals. The agricultural sector is a carbon-absorbing sector, and its importance has increased as the General Assembly of the Parties to the Climate Change Convention (COP 26) held in the UK in November 2021 emphasized the role of agriculture to discuss climate change. However, GHG reduction projects in the agricultural sector are not properly monitored considering the domestic situation, and a system for quantitative evaluation of the effectiveness or basis of implementing the project program is not in place. Therefore, a priori study is needed to understand the current status of existing policies and to review matters that need to be improved in order to facilitate policy design, implementation, and monitoring for GHG reduction in the agricultural sector. The purpose of this study is to examine the opinions of stakeholders by applying a semi-structured interview method to diagnose the current status of Korea's GHG reduction policy in the agricultural sector and identify factors that hinder policy implementation. As a result of the semi-structured interview, this study presented factors that hinder the promotion of GHG reduction policies in the agricultural sector according to four types of data and technology, finance, institutions, and perceptions. Some stakeholders also stressed that the pilot project could be helpful as a way to comprehensively consider the implications of this study, such as securing technology data, establishing a system for verifying effectiveness, and providing incentives and promoting them. Rather than drawing specific conclusions, this study is an exploratory study that diagnoses and reviews the progress of GHG reduction policies, and it can be used as useful basic data if it secures enough interview respondents and balances the number of samples by group.

Physiological Responses of One-year-old Zelkova serrata Makino Seedlings to Ozone in Open-top Chamber (Open-top chamber 내(內)에서 오존에 폭로(暴露)시킨 1년생(年生) 느티나무(Zelkova serrata Makino) 묘목(苗木)의 생리적(生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Kim, Hyun Seok;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.424-431
    • /
    • 1995
  • This study was conducted to evaluate resistance and physiological responses of Zelkova serrata Makino seedlings to ozone in open-top chamber. One-year-old seedlings of Zelkova serrata were planted in pots in April and grown in greenhouse until August. The plants were transferred into two out-door open-top chambers with a dimension of 2.0 m in diameter and 2.0 m in height. First chamber served as a control and was supplied with ambient air. Ozone was added to the second chamber for 5 hours per day(10.00 AM-15.00 PM) for 23 consecutive days at 0.1 ppm. Each chamber housed 70 pots. Every two, three or five days after initiation of exposure, ten pots were randomly removed from the chamber and determined for the contents of chlorophyll a, b, total chlorophyll and ${\beta}$-carotene in the leaves. Photosynthesis and dark respiration were estimated by measuring $CO_2$ absorption in a gas exchange chamber and oxygen absorption by oxygen monitoring system, respectively. Superoxide dismutase(SOD) activity in the leaves was assayed by a xanthine oxidase method. First visible injury of translucent(water-soaked looking) spots appeared on the leaves 14 days after the initial exposure, and ozone accelerated senescence of old leaves. Contents of chlorophyll a and b decreased by 17%, and 31%, respectively, in ozone treatment two days after exposure. The decrease in chlorophyll b was greater than that of chlorophyll a. Content of ${\beta}$-carotene in ozone treatment decreased by 25% two days after initiation of exposure, but the reduction was recovered with time. Photosynthesis decreased by 45%, and the respiration increased by 28% in the ozone treatment. SOD activity started to increase 4 days after beginning of exposure and increased by 285% 7 days after exposure, and decreased to the level below the control treatment with the advancement of the visible injury.

  • PDF

Growth and Physiological Adaptations of Tomato Plants (Lycopersicon esculentum Mill) in Response to Water Scarcity in Soil (토양 수분 결핍에 따른 토마토의 생육과 생리적응)

  • Hwang, Seung-Mi;Kwon, Taek-Ryun;Doh, Eun-Soo;Park, Me-Hea
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.266-274
    • /
    • 2010
  • This study aim to investigate fundamentally the growth and physiological responses of tomato plants in responses to two different levels of water deficit, a weak drought stress (-25 kPa) and a severe drought stress (-100 kPa) in soil. The two levels of water deficit were maintained using a micro-irrigation system consisted of soil sensors for the real-time monitoring of soil water content and irrigation modules in a greenhouse experiment. Soil water contents were fluctuated throughout the 30 days treatment period but differed between the two treatments with the average -47 kPa in -25 kPa set treatment and the -119 kPa in -100 kPa set treatment. There were significant differences in plant height between the two different soil water statuses in plant height without differences of the number of nodes. The plants grown in the severe water-deficit treatment had greater accumulation of biomass than the plants in the weak water-deficit treatment. The severe water-deficit treatment (-119 kPa) also induced greater leaf area and leaf dry weight of the plants than the weak water-deficit treatment did, even though there was no difference in leaf area per unit dry weight. These results of growth parameters tested in this study indicate that the severe drought could cause an adaptation of tomato plants to the drought stress with the enhancement of biomass and leaf expansion without changes of leaf thickness. Greater relative water content of leaves and lower osmotic potential of sap expressed from turgid leaves were recorded in the severe water deficit treatment than in the weak water deficit treatment. This finding also postulated physiological adaptation to be better water status under drought stress. The drought imposition affected significantly on photosynthesis, water use efficiency and stomatal conductance of tomato plants. The severe water-deficit treatment increased PSII activities and water use efficiency, but decreased stomatal conductance than the weak water-deficit treatment. However, there were no differences between the two treatments in total photosynthetic capacity. Finally, there were no differences in the number and biomass of fruits. These results suggested that tomato plants have an ability to make adaptation to water deficit conditions through changes in leaf morphology, osmotic potentials, and water use efficiency as well as PSII activity. These adaptation responses should be considered in the screening of drought tolerance of tomato plants.