• Title/Summary/Keyword: Greenhouse heating system

Search Result 200, Processing Time 0.03 seconds

Performance Analysis of the Wind Power Heat Generation Drum Using Fluid Frictional Energy (유체마찰에너지를 이용한 풍력열발생조의 성능 분석)

  • Kim, Yeong-Jung;Yu, Yeong-Seon;Gang, Geum-Chun;Baek, Lee;Yun, Jin-Ha;Lee, Geon-Jung
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.263-270
    • /
    • 2001
  • This study was conducted in order to develop wind-water heating system where frictional heat is creased between the rotor and working fluid when they are rotating in the cylindrical heat generator. The wind-water heating system is composed of rotor, stator, working fluid, motor, inverter and heat generation tank. Instead of wind turbine, we have used an electrical motor of 30㎾ to rotate the rotor in this system. Two working fluids and six levels of rotor rpm were tested to quantify heat amounts generated by the system. Generally, as motor rpm goes up heat amount increases that we have expected. At the same rpm, viscous fluid showed up better performance than the water, generating more heat by 10$\^{C}$ difference. The greatest heat amount of 31,500kJ/h was obtained when the system constantly drained out the hot water of at the flow rate of 500ℓ/h. Power consumption rate of the motor was measured by thee phase electric power meter where the largest power consumption rate was 14㎾ when motor rpm was 600 and gained heat was 31,500kJ/h, that indicated total thermal efficiency of the wind power water heating system was 62%.

  • PDF

A Development of Automation system and a way to use Solar Energy System Eefficiently in Greenhouse -Study on Growth and Yield of a cucumber in soil heating- (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치개발(2) -지중가온에 의한 오이 생육 및 수량에 관한 연구-)

  • 김진현;오중열;구건효;김태욱
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.05a
    • /
    • pp.61-67
    • /
    • 1998
  • 1973년과 1978년의 1,2차 Oil Shock로 인하여 정부는 대체에너지 개발을 입법화하여 태양열의 이용을 촉진시켜왔다. 그 후 약 20년간 태양열 이용에 대한 효과적인 집열과 축열기술의 개발에 연구가 추진되었으며, 집열판(Flat-plate collector)의 개발과 열교환기, 축열장치의 설계 등 효율향상을 통하여 건축의 난방, 온수급탕 등이 주종을 이루었다. (중략)

  • PDF

Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II) (열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II))

  • Suh, Won-Myung;Kang, Jong-Guk;Yoon, Yong-Cheol;Kim, Jung-Sub
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

Study on Temperature Variation by Greenhouse Soil Warming System Using Solar Thermal Energy (3) - Verification Experiment on Commercialization of Cultivation - (태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(3) - 지중변온가온의 재배실용화 실증시험 -)

  • Kim, Jin-Hyun;Kim, Tae-Wook;Song, Jae-Kwan;Nah, Kyu-Dong;Ha, Yu-Shin;Kim, Tae-Soo;Kim, Eun-Tae
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • According to the result of the first report and the second report of this study, it was expected that soil heating in a protected cultivation in winter season would affect the initial growth and development of fruit. Based on the result of previous study, we compared height, leaf number, leaf area, fruit weight, crop growth rate (CGR), features and quantity of cucumber for 3 months after planting between the soil heating group and the non-heating group. The result were summarized as follows: The height, leaf number, leaf area and fruit weight of cucumber in the soil heating group were 12.5%, 14.6%, 21.4% and 22.8% higher, respectively, compared to those of cucumber in the non-heating group. Although both the soil heating group and the non-heating group similarly showed an increasing pattern in CGR after transplanting, the soil heating group showed the increased CGR by 12.1% compared to that of the non-heating group. The quantity of cucumber in the soil heating group was about 26% higher than that of the non-heating group. It is assumed that the activation of initial growth and development of fruit in the heating group resulted in the increase of quantity.

A Development of Automation System and a Way to use Solar Energy System Efficiently in Greenhouse(1) - Study on temperature variation of soil heating in greenhouse - (시설원예용 태양열 시스템의 효율적 이용과 자동화 장치개발(1) - 시설재배시 지중가온의 온도변화 연구 -)

  • 김진현;김철수;명병수;최중섭;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 1998
  • The greenhouse temperature controls in general have been managed by the above-ground part environment, But the temperature of root zone was known very important factor for the 9rofth and the yield of vegetables in greenhouse. The purpose of this study is to develop a good method for cultivation using solar energy which can apply warming soil and to develop the greenhouse soil temperature automatic control system. Followings are summary of this study:1 When the greenhouse inner temperature changes were about 24$^{\circ}C$ during a day in October, the temperature of non-warmed soil was differenced 6$^{\circ}C$ in the depth 10cm and 3$^{\circ}C$ in the depth 20cm. 2. When water supply temperature was kept at 40, 50 and 6$0^{\circ}C$, the lowest soil temperature in the depth of 10cm is 2$0^{\circ}C$ and that of 20cm was 23$^{\circ}C$. and when the water supply temperature was over 4$0^{\circ}C$, the space heating temperature did not affect the temperature variation of soil. 3. In comparison with conditions of the warmed and non-warmed soil, when the water supply temperature is 28$^{\circ}C$, soil temperatures had the high temperature of 4$0^{\circ}C$~7$^{\circ}C$ in the depth of 10cm to 20 cm. 4. The line of boundary area was appeared in the depth of 15~20cm, 13~19cm and 12~17cm. when the water supply temperature was 4$0^{\circ}C$, 5$0^{\circ}C$ and 6$0^{\circ}C$. 5. When th inner greenhouse air temperature is maintained over 11$^{\circ}C$ and the water supply temperature is supported 28$^{\circ}C$, the lowest temperature is kept up over 2$0^{\circ}C$.

  • PDF

Effect of Growing Part Following Local Heating for Cherry Tomato on Temperature Distribution of Crop and Fuel Consumption (방울토마토 생장부 추종 국소난방이 군락 온도분포 및 연료소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Lee, Tae Seok;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.217-225
    • /
    • 2015
  • Local heating system providing hot air locally to growing parts including shoot apex and flower cluster which were temperature-sensitive organs of cherry tomato was developed to reduce energy consumption for greenhouse heating without decline of crop growth. Growing part following local heating system was composed of double duct distributer which connected inner and outer ducts with hot air heater and winder which moved ducts up and down following growing parts with plant growth. Growing part local heating system was compared with conventional bottom duct heating system with respect to distributions of air and leaf surface temperatures according to height, growth characteristics and energy consumption. By growing part local heating, air temperature around growing part was maintained $0.9{\sim}2.0^{\circ}C$ higher than that of lower part of crop and leaf surface temperature was also stratified according to height. Investigations on crop growth characteristics and crop yield showed no statistically significant difference except for plant height between bottom duct heating and growing part local heating. As a result, the growing part local heating system consumed 23.7% less heating energy than the bottom duct heating system without decrease of crop yield.

Evaluation of Heating Performance and Analysis of Heating Loads in Single Span Plastic Greenhouses with an Electrical or Hot-Air Heating (전기히터식 난방, 온풍난방시스템을 채용한 단동 플라스틱 하우스의 열부하 해석 및 난방성능 평가)

  • 허종철;임종환;서효덕;최동호
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.136-146
    • /
    • 1999
  • A series of experiments were carried out in winter to investigate the indoor thermal environment in greenhouses with different kinds of heating systems, and characterize the energy consumption, heat transport and thermal energy efficiency of each system. By the Quantitative calculation of heat losses which transmit through the covers of greenhouse, the fundamental data of energy-saving of the particular heating system were obtained. And from the analysis of air temperature differences between indoor and outside, it was possible to select more effective energy-saving and comfortable heating system in greenhouses. The electric heater was more stable in thermal environment and cheaper in cost, since it could be used during the surplus time of electric power from 10:00 p.M. to 8:00 A.M. But the low air temperature in greenhouses besides these times resulted in a chilling problem of the crops. The heating system by hot air had the advantage to show nearly uniform temperature difference by the height above the ground. But the system had the disadvantage to require more energy consumption than the electric heating system.

  • PDF

Effects of Pipe Network Composition and Length on Power Plant Waste Heat Utilization System Performance for Large-scale Horticulture Facilities (발전소 온배수를 적용한 대규모 시설원예단지용 난방시스템의 열원이송 배관 재질 및 거리에 따른 성능평가)

  • Lee, Keum ho;Lee, Jae Ho;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2015
  • Korean government plans to establish large-scale horticulture facility complexes using reclaimed land in order to improve the national competitiveness of agriculture at the government level. One of the most significant problems arising from the establishment of those large-scale horticulture facilities is that these facilities still largely depend on a fossil fuel and they require 24 h a day heating during the winter season in order to provide the necessary breeding conditions for greenhouse crops. These facilities show large energy consumption due to the use of coverings with large heat transmission coefficients such as vinyl and glass during heating in the winter season. This study investigated the applicability of waste heat from power plant for large-scale horticulture facilities by evaluating the waste heat water temperature, heat loss and energy saving performance as a function of distance between power plant and greenhouse. As a result, utilizing power plant waste heat can reduce the energy consumption by around 85% compared to the conventional gas boiler, regardless of the distance between power plant and greenhouse.

Analysis of Air Temperature and Humidity Distributions and Energy Consumptions according to Use of Air Circulation Fans in a Single-span Greenhouse (단동온실 내 공기순환팬 사용에 따른 온습도 및 에너지소비량 비교 분석)

  • Lee, Tae Seok;Kang, Geum Choon;Kim, Hyung Kweon;Moon, Jong Pil;Oh, Sung Sik;Kwon, Jin Kyung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • The aim of this study was to compare and analyze air temperature and humidity distribution and energy consumptions according to using air circulation fans in single-span greenhouses. The greenhouses located in Cheongnam-myeon, Cheongyang-gun, Chungcheongnam-do, Korea. There were cherry tomatoes in the greenhouses and the size of greenhouses was as follows;ridge height : 3.2 m, wide : 6 m, length : 95 m. The heating system was composed of a hot-water boiler and 6 FCUs(Fan Coil Unit)-4 FCUs were on bottom with duct and 2 FCUs were installed at 2.0 m. A total of 18 air circulation fans(impeller's diameter : 230 mm) were bilaterally arranged in 2 rows in the experimental greenhouse. The sensors for measuring air temperature and humidity were located at a quarter and three quarters of a length. The height of sensors were 0.8 m, 1.8 m. To calculate energy consumption in greenhouses, water temperature at inlet and outlet in a water pump, volume of water were measured. Form February 3rd to March 23th, temperature, humidity and energy consumptions were measured during heating time(6pm~7am). In a greenhouse without fans, the average differences of temperature and humidity were $0.75^{\circ}C$, 2.31%, respectively. The operation of fans showed their differences to $0.42^{\circ}C$, 1.8%. The standard deviation of temperature and humidity between measuring points in the greenhouse with fans was lower than the greenhouse without fans. Total energy consumptions in a greenhouse without fans were 4,673 kWh. In the greenhouse with fans, the total energy consumptions were 4,009 kWh. The energy consumptions in a greenhouse with fans 14.2% were less than the greenhouse without fans. Therefore, air circulation makes temperature and humidity uniform and saves energy consumptions for heating.

Analysis of the Initial Cost Payback Period on the Open-loop Geothermal System Using Two Wells (복수정을 이용한 개방형 지열 시스템의 초기투자비 회수기간 분석)

  • Cho, Jeong-Heum;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.119-126
    • /
    • 2017
  • Recently, ground source heat pump systems are being used in buildings for cooling and heating to reduce greenhouse gas and save energy. However, ground source heat pump systems mainly use the vertical closed-loop geothermal system design rather than the open-loop geothermal system design. This is due to a lack of knowledge and few research feasibility studies. In this research, a dynamic thermal analysis numerical simulation based on a standard house model was conducted for an open-loop geothermal system. Based on heating load analysis results, the life cycle costs of a standard house using an open two-well geothermal system were analyzed and compared with a vertical closed-loop geothermal system, and a diesel boiler. As a result, it was found that using an open two-well geothermal system shows economic return on investment after three years.