• Title/Summary/Keyword: Greenhouse gas (GHG) emissions

Search Result 277, Processing Time 0.028 seconds

Estimation of Green-House-Gas emissions from domestic aquaculture farm for flounders (넙치 양식장에서 발생하는 온실가스 배출량 산정)

  • YANG, Yongsu;LIM, Han-Kyu;LEE, Kyounghoon;LEE, Dong-Gil;SHIN, Hyeong-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.614-623
    • /
    • 2015
  • This study aims to estimate the Green-House-Gas emissions from domestic farmed flounder in the southern sea and Jeju-Do, where is mainly produced, by the assessment of energy consumptions and GHG emissions from domestic fish farms for establishing reduce standards of greenhouse gas from a sustainable perspective. It needs to analyze such GHG emission components as feed, electricity, fuel, fixed capital, fish respiration, and liquid oxygen in two locations by 4 stage running water type farm size of small, small and medium, large and medium, large scale. The result showed that the mean GHG emissions were $36.83kg{\cdot}CO_2/year$ in the southern sea and $24.33kg{\cdot}CO_2/year$ in Jeju-Do, respectively, in the stage of production per fish 1kg at 2 locations and farm size from domestic farmed flounders, and it will give to be useful for policy, planning, and regulation of aquaculture development with establishing GHG reduction standards.

A Study on QA/QC Method for GHG Inventory in the Railroad Construction Sector (철도건설현장의 온실가스 인벤토리 QA/QC 방안 연구)

  • Lee, Jae-Young;Jung, Woo-Sung;Kim, Yong-Ki;Hwang, In-Hawn
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.511-514
    • /
    • 2011
  • The impact of greenhouse gas (GHG) emissions is the global issue over the world. Korean government has presented various policies to induce GHG reduction for the industries with high energy consumption such as power generation and chemistry. Construction sector has produced a large amount of GHG emissions resulted in the energy consumption of heavy equipments and the use of materials. This study aims to suggest the QA (Quality Assurance) and QC (Quality Control) method to identify and quantify the GHG emissions released from heavy equipments in the railroad construction sector. Generally, the accuracy and reliability of GHG inventory is dependent on the data collection. Therefore, it is necessary to mange the detailed statements for the fuel consumption of heavy equipments and the quantity of work in the field. Also, the breakdown of GHG emission sources should be recorded from the design step of railroad infrastructures. Based on these data, the GHG reduction technologies and polices can be applied in railroad construction sector.

  • PDF

A Study on Greenhouse Gas Inventories for Regional Governments (A Case Study of Jeonbuk Province) (지자체 온실가스 인벤토리 구축연구 - 전라북도 사례)

  • Jang, Nam-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.565-572
    • /
    • 2009
  • Greenhouse gas(GHG) inventories and basic strategies for Jeonbuk regional government were established to reduce greenhouse gas emissions. The method to construct GHG inventories of Jeonbuk followed the 'Revised IPCC 1996 Guidelines'which was used for the 'Third National Communication of the Republic of Korea under UNFCCC'. Korean government could use primary energy consumption for the energy industries section in the national GHG inventories. However, regional governments should use secondary energy consumption (included electricity consumption) for the energy industries section for their GHG inventories because they could not control the emission of energy transformation section. In the result of Jeonbuk GHG inventories in 2006, carbon dioxide($CO_2$) emissions from fuel combustion covered 87.1% of total emissions. Methane($CH_4$), carbon dioxide($CO_2$) from other sections, nitrous oxide($N_2O$) and F-gas(HFCs, PFCs, $SF_6$) accounted for 8.1, 2.2, 1.6 and 1.0% of total emissions, respectively. The sectional emission decreased in the order of the energy(88.0%), agriculture(7.6%), waste(2.3%) and industrial processes(2.1%) section. The energy industries section that contained electricity consumption was the most dominant emission source in the energy section. F-gas consumption, rice cultivation and waste incineration were main emission sources in the industrial processes, agriculture and waste section, respectively. In this study, basic directions of each section were established by the results of Jeonbuk GHG inventories in 2006.

Analysis of the Relationships among Energy, Economic Growth and Greenhouse Gas Emissions Using Metropolitan City/Province Level Data (광역시·도별 자료를 이용한 에너지, 경제성장, 온실가스 배출 간의 관계 분석)

  • Lee, Jaeseok;Lee, Keun-Dae;Yu, Bok-Keun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.3
    • /
    • pp.503-533
    • /
    • 2021
  • This paper analyzes the relationships among the energy consumption, renewable energy production, real gross regional domestic product(GRDP), and greenhouse gas(GHG) emissions. It uses the metropolitan city and province level data for Korea from 2010 to 2018, employing a panal vector autoregressive(VAR) model. We find that an increase in energy consumption has a limited impact on boosting renewable energy production or gross regional domestic product, while it leads to an increase in greenhouse gas emissions. A rise in renewable energy production can increase gross regional domestic product, but it has no meaningful effects on energy consumption and the reduction of green house gas emissions. Our finding indicates that it is crucial to expand the supply of renewable energy as well as to decrease energy consumption in order to achieve the goal of reducing greenhouse gas emissions and reaching economic growth.

Impact of livestock industry on climate change: Case Study in South Korea - A review

  • Sun Jin Hur;Jae Min Kim;Dong Gyun Yim;Yohan Yoon;Sang Suk Lee;Cheorun Jo
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.405-418
    • /
    • 2024
  • In recent years, there has been a growing argument attributing the primary cause of global climate change to livestock industry, which has led to the perception that the livestock industry is synonymous with greenhouse gas (GHG) emissions. However, a closer examination of the global GHG emission by sector reveals that the energy sector is responsible for the majority, accounting for 76.2% of the total, while agriculture contributes 11.9%. According to data from the Food and Agriculture Organization of the United Nations (FAO), the total GHG emissions associate with the livestock supply chain amount to 14.5%. Within this, emissions from direct sources, such as enteric fermentation and livestock manure treatment, which are not part of the front and rear industries, represent only 7%. Although it is true that the increase in meat consumption driven by global population growth and rising incomes, has contributed to higher methane (CH4) emissions resulting from enteric fermentation in ruminant animals, categorizing the livestock industry as the primary source of GHG emissions oversimplifies a complex issue and disregards objective data. Therefore, it may be a misleading to solely focus on the livestock sector without addressing the significant emissions from the energy sector, which is the largest contributor to GHG emissions. The top priority should be the objective and accurate measurement of GHG emissions, followed by the development and implementation of suitable reduction policies for each industrial sector with significant GHG emissions contributions.

LMDI Decomposition Analysis for GHG Emissions of Korea's Manufacturing Industry (LMDI 방법론을 이용한 국내 제조업의 온실가스 배출 요인분해분석)

  • Kim, Suyi;Jung, Kyung-Hwa
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.229-254
    • /
    • 2011
  • In this paper, we decomposed Greenhouse-Gas emissions of Korea's manufacturing industry using LMDI (Log Mean Divisia Index) method. Changes in $CO_2$ emissions from 1991 to 2007 studied in 5 different factors, industrial production (production effect), industry production mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect), and $CO_2$ emission factors (emission-factor effect). By results, the structure effect and intensity effect has a role of reducing GHG emissions and The role of structure effect was bigger than intensity effect. The energy mix effect increased GHG emissions and emission-factor effect decreased GHG emissions. By time series analysis, IMF regime affected the GHG emission pattern. the structure effect and intensity effect in that regime was getting worse. After 2000, in the high oil price period, the structure effect and intensity effect is getting better.

  • PDF

Estimating Greenhouse Gas Emissions from Marine Vessels in the Port of Busan using PORT-MIS and Vessel Specification Databases (PORT-MIS 및 선박제원 DB를 이용한 부산항 입출항 선박의 온실가스 배출량 산정)

  • Kim, Jongjin;Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1251-1259
    • /
    • 2014
  • This study presents the linkage method combining the existing Port Management Information System (PORT-MIS) DB with the scattered vessel activity data sets including the hotelling and maneuvering characteristics and specification information of the vessels arriving and departing from the port of Busan from January 2009 to June 2010. By linking the data sets, this study made three types of vessel activity databases: L-PORT-MIS DB with low-level vessel activities, M-PORT-MIS DB with medium-level vessel activities such as hotelling time, H-PORT-MIS DB with high-level vessel activities such as hotelling time, engine power, etc. The greenhouse gas (GHG) emissions estimation results show that total GHG emissions decreases when the detailed vessel activities are employed. This decrease in the total GHG emissions by the level of vessel activities implies that the GHG emissions from the low and medium level vessel activities are overestimated due to the aggregated hotelling/maneuvering times and speeds resulting from the past vessel specifications. Therefore, the GHG emissions using the H-PORT-MIS DB are more reliable GHG emission estimates in that the vessel specifications and the observed hotelling time of each vessel are employed in the estimation process. Hence, the high-level vessel activity dataset should be constructed to implement more suitable countermeasures for reducing the GHG emissions in the port of Busan.

Estimation and Feature of Greenhouse Gas Emission in Building Sector by National Energy Statistic (국가 에너지통계에 따른 건물부문 온실가스 배출량 추계 및 특성)

  • Jeong, Young-Sun;Kim, Tae-Hyoung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.187-195
    • /
    • 2019
  • In December 2015, The Paris Agreement was adopted to undertake ambitious efforts to combat climate change. Korean government announced its goal of reducing the country's greenhouse gas emissions by up to 37% below business as usual projections by 2030 in 2015. The purpose of this study was to set up the calculation methodology of GHG emission($CO_{2e}$) in building sector and to estimate the annual GHG emission in building sector based on national energy consumption statistic. The GHG emission from buildings is about 135.8 million ton $CO_{2e}$ as of 2015, taking up about 19.6% of Korea's entire emission and is about 144.7 million ton $CO_{2e}$ in 2017. The GHG emission of building sector is increasing at annual rate of 2.0% from 2001 to 2017. The GHG emission from electricity consumption in buildings is 91.8 million ton $CO_{2e}$ in 2017, is the highest $CO_2$ emission by energy source. The results show that the intensity of GHG emission of residential building sector is $40.6kg-CO_{2e}/m^2{\cdot}yr$ and that of commercial building sector is $68.4kg-CO_{2e}/m^2{\cdot}yr$.

Comparative Analysis of Scenarios for Reducing GHG Emissions in Korea by 2050 Using the Low Carbon Path Calculator (저탄소 경로 모형을 활용한 2050년 한국의 온실가스 감축 시나리오 비교 분석)

  • Park, Nyun-Bae;Yoo, Jung-Hwa;Jo, Mi-Hyun;Yun, Seong-Gwon;Jeon, Eui Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.556-570
    • /
    • 2012
  • The Low Carbon Path Calculator is an excel-based model to project greenhouse gas emissions from 2009 to 2050, which is based on the 2050 Pathways Calculator developed by the UK Department of Energy and Climate Change (DECC). Scenarios are developed to reduce GHG emissions in Korea at 50% based on 2005 levels by 2050 using a Low Carbon Path Calculator. They were classified in four different cases, which are high renewable, high nuclear, high CCS and mixed option scenarios. The objectives of this study are to compare scenarios in terms of GHG emissions, final energy, primary energy and electricity generation and examine the usefulness of that model in terms of identifying pathways towards a low carbon emission society. This model will enhance the understanding of the pathways toward a low carbon society and the level of the climate change policy for policy makers, stakeholders, and the public. This study can be considered as a reference for developing strategies in reducing GHG emissions in the long term.

Generation Expansion Planning Model Supporting Diverse Environmental Policies for Reduction of Greenhouse Gases

  • Lee, Jeong-In;Lee, Il-Woo;Kim, Bal-Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.295-305
    • /
    • 2015
  • The purpose of this paper is to a develop model for generation expansion planning that can support diverse environmental policies for the reduction of greenhouse gases (GHGs) of South Korea. South Korea is required to reduce its GHG emissions by 30% from the BAU level by 2020. The Wien Automatic System Planning Package currently used in South Korea has limitations in terms of the application of renewable energy policies and GHG targets; this paper proposes the use of an equipment planning model named generation and transmission expansion program, which has been developed to resolve such limitations. For verification of the model, a case study on the 6th Basic Plan of Long-Term Electricity Supply and Demand has been conducted. The results show that for the year 2020 South Korea's annual GHG emissions will be 36.6% more than the GHG Target Management System (GHG TMS) target set for the same year (30%). To achieve the GHG TMS target, the costs involved amount to about 72 trillion KRW (70 billion USD). Consequently, the South Korean government needs to review the performability of this target.