• Title/Summary/Keyword: Greenhouse gas

Search Result 1,852, Processing Time 0.032 seconds

Electrocatalytic Reduction of Carbon Dioxide on Sn-Pb Alloy Electrodes

  • Choi, Song Yi;Jeong, Soon Kwan;Park, Ki Tae
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.231-236
    • /
    • 2016
  • Electrocatalytic reduction can produce useful chemicals and fuels such as carbon monoxide, methane, formate, aldehydes, and alcohols using carbon dioxide, the green house gas, as a reactant through the supply of electrical energy. In this study, tin-lead (Sn-Pb) alloy electrodes are fabricated by electrodeposition on a carbon paper with different alloy composition and used as cathode for electrocatalytic reduction of carbon dioxide into formate in an aqueous system. The prepared electrodes are measured by Faradaic efficiency and partial current density for formate production. Electrocatalytic reduction experiments are carried out at -1.8 V (vs. Ag/AgCl) using H-type cell under ambient temperature and pressure and the gas and liquid products are analyzed by gas chromatograph and liquid chromatograph, respectively. As results, the Sn-Pb electrodes show higher Faradaic efficiency and partial current density than the single metal electrode. The Sn-Pb alloy electrode which have Sn:Pb molar ratio=2:1, shows the highest Faradaic efficiency of 88.7%.

Domestic Greenhouse Gas Reduction Policy (국내 온실가스 감축 정책)

  • Bae, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2011
  • For reducing greenhouse gas emissions, the short-term strategy is of existing energy-efficient appliances to facilitate the spread of energy efficiency improvements to improve energy efficiency, energy saving projects that will include investments to enable. R&D is at the core of the long-term strategy. To reduce energy demand, the equipments and processes improved energy efficiency should be developed. In terms of energy supply, the policies for greenhouse gas reduction is to replace fossil fuels by expanding the supply of renewable energy such as solar, wind, geothermal, biomass and nuclear power as nearly zero-emission of greenhouse gas. In terms of energy consumption, measures to reduce greenhouse gas emissions is in line with the policy for efficiency improvement. The buildings & work-site of high-energy consumption in the building & Industry sectors, should implement a policy to strengthening the voluntary agreement on energy-saving facilities and expand to invest in energy saving facilities.

Quality Improvement of Greenhouse Gas Inventories by the Use of Bottom-Up Data (상향식 자료를 이용한 온실가스 인벤토리의 품질 개선 방향 - 화학, 금속 분야를 중심으로 -)

  • Choi, Eunhwa;Shin, Eunseop;Yi, Seung-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.161-174
    • /
    • 2014
  • The methodology report '2006 IPCC Guidelines for National Greenhouse Gas Inventories' shows higher tier method can be a good practice, which uses country-specific or plant-specific data when calculating greenhouse gas emissions by country. We review the methodology report to present principles of using plant-level data and also examine examples of using plant-level data in chemical and metal industry in 20 countries for the purpose of quality improvement of national greenhouse gas inventories. We propose that Korea consider utilizing plant-level data, as reported according to 'Greenhouse gas and Energy Target Management Scheme', in the following order as a preference. First, the data can be utilized for quality control of Korea's own parameters, when Tier 2 method is adopted and bottom-up approach is not applicable. Second, both plant-level data and IPCC default data can be used together, combining Tier 1 method with Tier 3 method. Third, we can also use acquired plant-level data and country specific parameters, combining Tier 2 method with Tier 3 method. Fourth, if the plant-level data involves all categories of emissions and the data is proven to be representative, we can apply Tier 3 method. In this case, we still need to examine the data to check its reliability by a consistent framework, including appropriate quality control.

Effect on the Heat of Reaction to Temperature and Absorption Capacity in the Reaction of Cyclic Amines with Carbon Dioxide (고리형 아민과 이산화탄소의 반응에서 온도와 흡수능이 반응열에 미치는 영향)

  • CHOI, JEONG HO;JANG, JONG TACK;YUN, SOUNG HEE;JO, WON HEE;JUNG, JIN YOUNG;YOON, YEO IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.530-537
    • /
    • 2018
  • The effect of temperature and absorption capacity on heat of reaction, which is one of the characteristic studies of $CO_2$ absorption, were investigated in a differential reaction calorimeter (DRC) by using piperazine (PZ) and 2-methylpiperazine (2-MPZ). For all absorbents, $CO_2$ loading capacity decreased with increasing the temperature, while the heat of reaction increased, it figured out that these had a linear correlation between $CO_2$ loading capacity and/or heat of reaction and the temperature. The heat of reaction of all absorbents increased with increasing $CO_2$ loading capacity, especially 2-MPZ rapidly increased at $70^{\circ}C$. The reason for increase in the heat of reaction was occurred the regeneration of $CO_2$, which is a reverse-reaction, simultaneously with the absorption.

The Relationship between Korea Agricultural Productions and Greenhouse Gas Emissions Using Environmental Kuznets Curve (환경쿠즈네츠곡선을 이용한 한국의 농업 생산과 온실가스 배출의 관계 분석)

  • Kang, Hyun-Soo
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.1
    • /
    • pp.209-223
    • /
    • 2021
  • Purpose - The purpose of this study was to investigate the relationship between Korea agricultural productions and Greenhouse Gas (GHG) emissions based on Environmental Kuznets Curve (EKC) hypothesis. Design/methodology/approach - This study utilized time series data of economic growth, greenhouse gas, agricultural productions, trade dependency, and energy usages. In order to econometric procedure of EKC hypothesis, this study utilized unit root test and cointegration test to check staionarity of each variable and also adopted Vector Error Correction Model (VECM) and Ordinary Least Square (OLS) to analyze the short and long run relationships. Findings - In the short run, greenhouse gas emissions resulting from economic growth show an inverse U-shape relationship, and an increase in agricultural production and energy consumption led to increase in greenhouse gas emission. In the long run, total GHG emissions and CO2 emissions show an N-shaped relationship with economic growth, and an increase in agricultural production has resulted in a decrease in total GHG and CO2 emissions. However, methane (CH4) and nitrous oxide (N2O) emissions showed an inverse U-shape relationship with economic growth, which indicated the environment and production process of agricultural production. Research implications or Originality - Korea agricultural production has different effects on the GHG emission sources, and in particular, methane (CH4) and nitrous oxide (N2O) emissions show to increase as the agricultural production expansions, so policy or technological development in related sector is required. Especially, in the context of the 2030 GHG reduction road-map, if GHG-related reduction technologies or policies are spread, national GHG emission reduction targets can be achieved and this is possible to predict the decline in production in the sector and damage to the related industries.

Estimation of the Carbon Stock and Greenhouse Gas Removals by Tree Species and Forest Types in Gangwon Province (강원도 산림의 임상별, 수종별 탄소저장량 및 온실가스 흡수량 산정)

  • Lee, Sun Jeoung;Yim, Jong-Su;Son, Yeong Mo;Kim, Raehyun
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.303-310
    • /
    • 2015
  • This study was conducted to estimate of carbon stock and greenhouse gas (GHGs) removals by tree species and forest type at Gangwon province. We used a point sampling data with permanent sample plots in national forest inventory and national emission factors. GHGs emissions was caclulated using the stock change method related to K-MRV and IPCC guidance. Total carbon stock and greenhouse gas removals were high in deciduous forest and species than in coniferous. The range of annual net greenhouse gas emissions in other deciduous species was from $-11,564.83Gg\;CO_2\;yr^{-1}$ to $-13,500.60Gg\;CO_2\;yr^{-1}$ during 3 years (2011~2013). On the other hand, coniferous forest was temporally converted to source due to reducing of growing stock in 2012. It was that growing stocks and forest area were likely to reduce by the deforestation and clear cutting. This study did not consider other carbon pools (soil and dead organic matter) due to the lack of data. This study needs to complement the activity data and emission factors, and then will find the way to calculate the greenhouse gas emissions and removals in the near future.

EFFECTS OF GAS EXHAUSTED FROM GASOLINE ENGINE ON PLANTS GROWN IN THE GREENHOUSE

  • Sugimoto, H.;Yamashita, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.487-494
    • /
    • 1993
  • In order to establish a fully automatized pest control in the a greenhouse , the authors developed a prototype of microcomputer installed spraying vehicle which traveled along the furrows. Since a power sprayer mounted on the vehicle was driven by gasoline engine, plants grown in the greenhouse might be injured by the gas exhausted from the engine. Thus , effects of exhausted gas on photosynthetic rate and the shedding of flowers and buds of plants were examined. At first, effects of exhausted gas on photosynthetic rate of potted sweet pepper (Capsicum annuum L.) and eggplant(Solanum melongena L.) plants were examined. In a closed vinyl house the engine was operated for 5 minutes and plants were exposed to the gas for 2hours in the daytime on a fine day. Photosynthetic rate did not significantly decreased by the treatment in both species. Secondly, effects of ehtylene on the shedding of flowers and buds of sesame (Sesamum indicum L. ) were examined. In the closed and partiall opened vinyl house, the engine was operated for 5 minutes and potted sesame plants were exposed to the gas for 12 hours in the night. In partially opened vinyl house, ethylene concentration decreased to 0 ppm 3 hours after the engine was stopped and flower and bud did not shed. In contrast, when vinyl house was closed ethylene concentration was 0.75 pm even 12 hours after the engine was stopped and flowers and buds shed markedly and epinasty was observed in upper young leaves. As mentioned above , it was revealed that injury of plants in the greenhouse caused by the gas exhausted from a gasoline engine could be prevented by providing suitable ventilation.

  • PDF

Comparison of N2O Emissions by Greenhouse Gas Emission Estimation Method (온실가스 배출량 산정 방법에 따른 N2O 배출량 비교)

  • Kang, Soyoung;Cho, Chang-Sang;Kim, Seungjin;Kang, Seongmin;Yoon, Hyeongi;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2015
  • In this study GC and PAS were used to calculate $N_2O$ concentration of exhaust gas from Wood Chip combustion system. Fuel supplied to the incinerator was collected and analyzed and then the analysis result was used to calculate $N_2O$ emissions. Tier 3 and Tier 4 Method were used to calculate the $N_2O$ emissions. Plant's Specific emission factor of $N_2O$ by Tier 3 Method was 0.35 kg/TJ, while default emission factor of Wood?Wood Waste proposed by 2006 IPCC G/L was 4 kg/TJ. So the $N_2O$ emission factor of this study was 3.65 kg/TJ lower compared to the IPCC G/L. The total emissions calculated by Plant's specific emission factor was 4.22 kg during the measuring period, but by Tier 4 Method it was 7.88 kg. This difference in emissions was caused by the difference of continuous measuring and intermittent sampling. It would be necessary to apply continuous measuring to calculate emissions of $Non-CO_2$ gas whose the density distribution is relatively high. However currently, according to the target management guideline of greenhouse gas and energy, the continuous measuring method to calculate greenhouse gas emission is applied only to $CO_2$. Therefore for reliable greenhouse gas emission calculation it would be necessary to apply continuous measuring to calculate $Non-CO_2$ gas emission.

A Study on Greenhouse Gas Emission Characteristics for Regional Governments (A Case Study of Jeonbuk Province) (지자체 온실가스 배출특성 분석연구-전라북도 14개 시·군 사례)

  • Jang, Nam-Jung;An, Jeong-Yi;Kim, Tae-Kyun;Im, Seoung-Hyun;Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.225-237
    • /
    • 2011
  • For each local town (6 cities and 8 counties) affiliated with Jeonbuk provincial government, characteristics of greenhouse gas (GHG) emissions were analyzed and key emission areas were drawn to establish mitigation policies of the regional greenhouse gases. National Institute of Environmental Research (NIER) reported that the total greenhouse gas emission of Jeonbuk was 20.93 million $tCO_2e$ in 2006. The inland area of 5 cities and 1 county (Jeonju, Gunsan, Iksan, Jungeup, Kimje, Wanju) covered 82% of total greenhouse gas emission in Jeonbuk, while the rest local towns of the province, mostly from mountainous areas were responsible for the rest of the total GHG emission. The cities and counties having relatively higher emission in Jeonbuk province were influenced dominantly by the emission from energy and waste sections. Also, agricultural section showed similar tendency except industrial cities such as Gunsan and Jeonju. In the internal portion of city and county, energy section showed the highest portion at the range of 72.1 (Sunchang)~97.0% (Jeonju) and agricultural section was at the range of 1.2% (Jeonju)~26.6 (Sunchang). When the portion of energy section was higher, the lower agricultural section. The emission index was applied to decide the key city and county and the potential city and county with two methodologies in this study. It was required that the key emission areas were drawn to establish regional greenhouse gases mitigation policies.