• Title/Summary/Keyword: Greenhouse gas

Search Result 1,857, Processing Time 0.028 seconds

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.

International developments in geological storage of $CO_2$ ($CO_2$의 지질학적인 저장에 있어서의 국제적인 개발들)

  • Freund, Paul
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Geological storage of captured $CO_2$ is a new way of reducing greenhouse gas emissions to protect the climate, but is based on the established technology associated with injection of fluids underground. The geological formations of interest for this technique include operational and depleted oil and gas fields, and deep saline aquifers. Prediction of storage performance will depend on models of the behaviour of $CO_2$ in geological formations; these need to be refined and verified, and methods of monitoring developed and proved. These needs can be met through monitored demonstration and research projects. Current commercial projects that are demonstrating $CO_2$ storage include Sleipner, Weyburn, ORC, and In Salah; research projects include West Pearl Queen, Nagaoka, and Frio. In this paper, some of the monitored injection projects are described. The reservoirs employed for storing $CO_2$, and the associated monitoring techniques, are briefly reviewed. It is argued that small-scale research projects, used to develop techniques and prove models, are complementary to the large-scale monitored injections that will establish the viability of this technique for mitigating climate change.

Impacts of Elevated $CO_2$ on Algal Growth, $CH_4$ Oxidation and $N_2O$ Production in Northern Peatland (이탄습지에서 이산화탄소의 농도가 조류의 증식, 메탄 산화 및 아산화질소 생성에 미치는 영향)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.261-266
    • /
    • 2001
  • Effects of elevated carbon dioxide ($CO_2$) on soil microbial processes were studied in a northern peatland. Intact peat cores with surface vegetation were collected from a northern Welsh fen, and incubated either under elevated carbon dioxide (700 ppm) or ambient carbon dioxide (350 ppm) conditions for 4 months. Higher algal biomass was found under the elevated $CO_2$ condition, suggesting $CO_2$ fertilization effect on primary production, At the end of the incubation, trace gas production and consumption were analyzed using chemical inhibitors. For methane ($CH_4$ ), methyl fluoride ($CH_3F$) was applied to determine methane oxidation rates, while acetylene ($C_2H_2$) blocking method were applied to determine nitrification and denitrification rates. First, we have adopted those methods to optimize the reaction conditions for the wetland samples. Secondly, the methods were applied to the samples incubated under two levels of $CO_2$. The results exhibited that elevated carbon dioxide increased both methane production (210 vs. $100\;ng\;CH_4 g^{-1}\;hr^{-1}$) and oxidation (128 vs. $15\;ng\;CH_4 g^{-1}\;hr^{-1}$), resulting in no net increase in methane flux. For nitrous oxide ($N_2O$) , elevated carbon dioxide enhanced nitrous oxide emission probably from activation of nitrification process rather than denitrification rates. All of these changes seemed to be substantially influenced by higher oxygen diffusion from enhanced algal productivity under elevated $CO_2$.

  • PDF

A Study on the Calculation of $CO_2$ Emission and Road Freight Environmental Index for Logistics Companies (물류기업의 온실가스 배출량 및 도로화물환경지표 산정에 관한 연구)

  • Kim, Jong-Hyeon;Kim, Hong-Sang;Choe, Sang-Jin;Park, Seong-Gyu;Kim, Jeong;Jang, Yeong-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.25-35
    • /
    • 2011
  • In order to reduce Green House Gas(GHG) reduction in the road freight sector and thus establish green logistics, running efficiency of goods vehicles is of paramount importance. Providing effective transportation infrastructure can contribute to achieve the green logistics by reducing empty running of heavy goods vehicles and van, increasing the average payload on the vehicle, and shifting the transportation mode. In order to reduce the environmental impact from the road freight sector, it is essential to quantify the amount of environmental loading from the sector. However, any systematic survey on the environmental loading from the logistics companies has not been carried out in Korea. In this study, the environmental index for the road freight sector is defined as the amount of $CO_2$ emission per ton km generated from goods vehicles. The computational analysis shows that the average $CO_2$ emission per ton km generated by the logistics companies in Korea is $363g-CO_2/ton{\cdot}km$. Compared to UK (=$130g-CO_2/ton{\cdot}km$) and France (=$97g-CO_2/ton{\cdot}km$), the efficiency of logistics in Korea is 2.8 and 3.7 times as low as in the advanced countries. It also indicates that the main reasons for the low efficiency are mainly due to the high rate of empty operation of goods vehicles and the low payload.

Removal of SF6 over Silicon Carbide with Aluminium Oxide by Microwave Irradiation (마이크로웨이브 조사에 따른 산화알루미늄이 함유된 실리콘카바이드의 SF6 제거)

  • Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.240-246
    • /
    • 2013
  • $SF_6$ is the most important greenhouse gas with the highest GWP (global warming potential). The $SF_6$ decomposition study was performed with silicon carbide with aluminium oxide by microwave irradiation. DRE (Decomposition and Removal Efficiencie) of $SF_6$ were evaluated by GC-TCD unit using 3,000 ppm $SF_6$ gas. DRE of $SF_6$ was increased by $Al_2O_3$ contents to 10~30 wt%, otherwise $Al_2O_3$ content of 40~50 wt% was decreased. DRE of $SF_6$ up to 99.99% have been achieved in SiC-$Al_2O_3$ (20 wt%) and SiC-$Al_2O_3$ (30 wt%) above $900^{\circ}C$. Also, the DRE of SiC-$Al_2O_3$ (30 wt%) at $700^{\circ}C$ showed 96.72%. In addition to consideration microwave input energy and $Al_2O_3$ content, SiC-$Al_2O_3$ (30 wt%) can be suggested the best material to control $SF_6$. The results of this study suggest it is important to control content of $Al_2O_3$ in SiC for decomposition of $SF_6$ with microwave energy.

Synthesis of Fe3O4-δ Using FeC2O4·2H2O by Thermal Decomposition in N2 Atmosphere (N2분위기에서 FeC2O4·2H2O의 열분해에 의한 Fe3O4-δ합성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;An, Suk-Jin;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.253-258
    • /
    • 2012
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) was applied to reducing $CO_2$ gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a $CO_2$ removal process. One of the typical dry methods is $CO_2$ decomposition using activated magnetite ($Fe_3O_{4-{\delta}}$). Generally, $Fe_3O_{4-{\delta}}$ is manufactured by reduction of $Fe_3O_4$ by $H_2$ gas. This process has an explosion risk. Therefore, a non-explosive process to make $Fe_3O_{4-{\delta}}$ was studied using $FeC_2O_4{\cdot}2H_2O$ and $N_2$. $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$ were used as starting materials. So, ${\alpha}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method. During the calcination process, $FeC_2O_4{\cdot}2H_2O$ was decomposed to $Fe_3O_4$, CO, and $CO_2$. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 $m^2/g$ to 9.32 $m^2/g$. The densities of $FeC_2O_4{\cdot}2H_2O$ and $Fe_3O_4$ were 2.28 g/$cm^3$ and 5.2 g/$cm^3$, respectively. Also, the $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by CO. From the TGA results in air of the specimen that was calcined at $450^{\circ}C$ for three hours in $N_2$ atmosphere, the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was estimated. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was 0.3170 when the sample was heat treated at $400^{\circ}C$ for 3 hours and 0.6583 when the sample was heat treated at $450^{\circ}C$ for 3 hours. $Fe_3O_{4-{\delta}}$ was oxidized to $Fe_3O_4$ when $Fe_3O_{4-{\delta}}$ was reacted with $CO_2$ because $CO_2$ is decomposed to C and $O_2$.

A Study on the boiler efficiency with selecting the uppermost burners in the 870MW opposite wall fired boiler (870MW 대향류 보일러에서 최상부층 버너 선택운전에 따른 보일러 효율변화 고찰)

  • Woo, Gwang-Yoon;Kim, Soo-Seok;Park, In-Chan;Ham, Young-Jun;Lee, Eung-Yoon
    • Plant Journal
    • /
    • v.13 no.2
    • /
    • pp.46-51
    • /
    • 2017
  • In this study, the boiler efficiency and the change of boiler combustion state with the burner operation of the uppermost layer of 870MW opposite fired coal boiler were measured. Test results showed that the boiler efficiency was high in the order of the uppermost layer simultaneous operation of the front and rear burners, the front burner, and the rear burner operation. When the front and rear burners were operated simultaneously, the heat absorption rate of water walls in the boiler furnace was uniform at four side, and the temperature deviation of the left and right steam on the convection front surface decreased. As the heat absorption rate of the boiler improved, the loss of boiler exhaust gas decreased and the coal supply amount decreased by 8 tons/hour compared to the operation of the rear burner. This will contribute not only to the reduction of fuel cost but also to the reduction of greenhouse gas emissions.

  • PDF

Design and Optimization of a Biomass Production System Combined with Wind Power Generation and LED on Marine Environment (LED가 결합된 야간풍력발전 활용을 포함한 해상환경 바이오매스 생산시스템의 최적 설계)

  • Hong, Gi Hoon;Cho, Sunghyun;Kang, Hoon;Park, Jeongpil;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Carbon dioxide was designated as one of greenhouse gases that cause global warming. Among various ways to solve the $CO_2$ emission issue, the 3rd-generation biomass (algae) production is considered as a viable method to reduce $CO_2$ in the atmosphere. In this research, we propose a design of an innovative sustainable production system by utilizing the 3rd generation biomass in the environment of floating production storage and offloading (FPSO). Existing biomass production systems depend on the solar energy and they cannot continue producing biomass at night. Electricity produced from offshore wind farms also need an efficient way to store the energy through energy storage system (ESS) or deliver it real-time through power grid, both requiring heavy investment of capital. Thus, we design an offshore grid structure harnessing LED lights to supply the necessary light energy, by using the electricity produced from the wind farm, resulting in the maximized production of biomass and efficient use of wind farm energy. The final design integrates the biomass production system enhanced by LED lights with a wind power generation. The suggested NLP model for the optimal design, implemented in GAMS, would be useful for designing improved offshore biomass production systems combined with the wind farm.

Recent Research Trends of Mixed Matrix Membranes for CO2 Separation (이산화탄소 분리용 혼합 매질 분리막 최신 연구 동향)

  • Chi, Won Seok;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.373-384
    • /
    • 2015
  • In the past few decades, polymeric membrane has played an important role in gas separation applications. For the separation of $CO_2$, one of greenhouse gases, high permselectivity, long-term stability and scale-up are needed. However, conventional polymeric membranes have shown a trade-off relation between permeability and selectivity while inorganic materials are highly permeable but expensive. Mixed matrix membranes (MMMs) combining the advantages of both polymeric and inorganic materials have become a possible breakthrough for the next-generation gas separation membranes. The MMMs could be either symmetric or asymmetric but the latter is more preferred to improve the permeance. Important factors influencing the MMM fabrication include homogeneous distribution of inorganic particles and good interfacial contact between inorganic filler and organic matrix. Recently, metal organic frameworks (MOFs) have received much attention as a new class of porous crystalline materials and a potential candidate for $CO_2$ separation. Zeolitic imidazolate frameworks (ZIFs), a sub-branch of MOFs, are the most widely used in MMMs due to small particle size and appropriate pore size for $CO_2$ separation. One of the major issues associated with the incorporation of porous particles in a polymeric membrane is to control the microstructure of the porous particle materials such as particle size, orientation, and boundary conditions etc. In this review, major challenges surrounding MMMs and the strategies to tackle these challenges are given in detail.

Comparison of the CO2 Emission Estimation Methods in a LNG Power Plant Based on the Mass Balance Approach (물질수지 방법을 고려한 액화천연가스 발전소에서의 온실기체 배출량 산정 방법 비교)

  • Kim, Hee-Jin;Yeo, Min Ju;Kim, Yong Pyo;Jang, Geon Woo;Shin, Won Geun;Lee, Myung Hwoon;Choi, Hyung Wook
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.235-244
    • /
    • 2013
  • Carbon dioxide emission estimation methods consist of four tiers according to the IPCC guideline. In this study, estimated results by tier 3 and tier 4 were compared with the theoretically calculated $CO_2$ emissions based on the mass balance approach for a gas fired power plant between March and May 2011. It was found that the relative differences were upto 17% between the measured emissions by tier 4 and theoretically estimated emissions, while the results of tier 3 were similar to those from theoretically estimated ones. The comparisons suggested the possibility of misestimation due to replacing missing, abnormal, or invalid data in continuous emissions monitoring system. When using only the data without those missing, abnormal, or invalid data, the relative differences decreased somewhat but still showed consistent differences depending on the stack. It is suggested that this differences might be due to the accuracy of the measurement instruments for the tier 4, especially, for the flow rate measurement instrument.