• Title/Summary/Keyword: Greenhouse effects

검색결과 758건 처리시간 0.026초

온실(溫室)에서 자라는 낙엽송(落葉松)의 접목묘(接木苗)와 야외(野外)에서 자라는 실생묘(實生苗)로부터 개화(開花)의 유도(誘導) (Flower Induction in Greenhouse-grown Hybrid Larch Grafts and Field-grown European Larch Seedlings)

  • 신동일
    • 한국산림과학회지
    • /
    • 제85권3호
    • /
    • pp.532-538
    • /
    • 1996
  • Indoor seed orchard의 가능성을 시험하기 위해 온실의 화분에서 자라는 낙엽송 접목묘와 야외에서 자라는 실생묘에 Gibberellins(GA4/7) 살포, 주입 및 몇가지 보조 처리를 사용하여 조기개화를 유도하였다. 온실의 화분에 지라는 접목묘에 대해서는 GA4/7 반복 살포 단독처리가 가장 효과적이었으나 보조 처리로서 사용된 root pruning은 상승효과를 보이 지 못했다. GA4/7 주입은 접목표의 치사를 초래하였기 때문에 유용한 방법이 아니었다. 10년생 실생묘를 이용한 야외실험에서는 GA4/7 살포와 보조처리로서 root pruning 또는 plastic mulching의 사용이 개화의 유도에 가장 효과적이었다.

  • PDF

바이오 디젤 적용에 따른 대형엔진의 배출가스 특성 (The Emission Characteristics of Bio-Diesel Fuel in Heavy-Duty Engine)

  • 김선문;엄명도;홍지형
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.499-506
    • /
    • 2010
  • Recently, a great deal of attention have been directed to the use of alternative fuels as a means to reduce vehicular emissions. As one of the promising alternative fuels, bio-diesel has advantages of a wide adaptability without retrofit of diesel engine. It is also effective enough to reduce CO, THC, $SO_x$, polycyclic aromatic hydrocarbons (PAHs) and PM. In this study, we investigated the emission characteristics of biofuels between different operating conditions, i.e., engine speed (1,400 rpm and 2,300 rpm), engine load (10% and 100%), bio-diesel blending (BD0, BD5 and BD20), and recirculation (EGR) rate of exhaust gas (0% and 20%). Relative performance of the system was evaluated mainly for the greenhouse gases ($CH_4$, $N_2O$ and $CO_2$). In addition, emission characteristics of ND-13 mode were also tested against both greenhouse gases and other airborne pollutants under emission regulation. The relative composition of bio-diesel has shown fairly clear effects on the emission quantities of CO, THC, and PM emission, although it was not on $NO_x$ and greenhouse gases. EGR rate has shown trade-off characteristics between $NO_x$ and PM.

한국의 폐기물부문의 온실가스 배출량 및 감축잠재량 분석 (Analysis of Greenhouse Gas Emission and Abatement Potential for the Korean Waste Sector)

  • 정용주;김후곤
    • 경영과학
    • /
    • 제33권4호
    • /
    • pp.17-31
    • /
    • 2016
  • Waste sector has been a target of abatement policies by the most governments, even though its greenhouse gas (GHG) emission is not so high, since it is related to almost of other sectors. This study propose new GHG calculation equations which resolves logical contradiction of IPCC GL (Intergovernmental Panel on Climate Change Guideline) equations by including waste-to-energy effects. According to two GHG calculation equations, GHG emission inventory and BAU by the year 2050 have been computed. And GHG abatement potential and marginal cost for the five abatement policies carefully selected from the previous researches have been calculated for the year 2020. The policy that makes solid fuel like RDF from flammable wastes and uses them as combustion fuel of electricity generations has been found to be the most efficient and effective one among five policies. The cumulative abatement amount when five policies not mutually exclusive are applied sequentially has been reckoned.

Nitrate Uptakes by Microorganisms Isolated from the Soils of Greenhouse

  • Cho, Kwang-Hyun;Lee, Gyeong-Ja;Ahn, Hae-Jin;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • 제48권1호
    • /
    • pp.11-15
    • /
    • 2005
  • Salinity of soils in greenhouse has been increased by massive application of fertilizers. Nitrogen fertilizer was most popular, and thus nitrate became the majority of soil salinity. Accumulation of nitrate led to deleterious effects on the growth and development of crops and vegetables. Microbial strains able to utilize nitrate and thus remove excess nitrate from farm land soils were isolated from 15 different soils of greenhouses and plastic film houses. Four strains able to grow in medium containing 50 mM $KNO_3$ were isolated, among which only E0461 showed high capacity of nitrate uptake. Nitrate uptake by E0461 was dependent on culture medium and was increased by addition of tryptone and peptone. Although E0461 was able to grow without tryptone and peptone, growth was slow, and no nitrate uptake was observed. Nitrate appeared to facilitate E0461 growth in the presence of tryptone and peptone. Through kinetic analysis, nitrate uptake was measured at various concentrations of nitrate, and half-life was calculated. Nitrate concentration decreased with increasing incubation period, and plot between half-lives and initial concentrations of nitrate fitted to single exponential function. These results suggest one major factor plays an important role in microbial nitrate uptake.

태양에너지를 이용한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발 (Thermal Energy Characteristics and Simulation Model Development for Greenhouse Heating System Using Solar Energy)

  • 노정근;송현갑
    • 한국태양에너지학회 논문집
    • /
    • 제21권2호
    • /
    • pp.27-34
    • /
    • 2001
  • The greenhouse heating system using solar energy has been realized in the protective agriculture in this study in order to analyse the thermal energy characteristics of the system the effects of ambient air temperature, solar radiation, relative humidities and water content of ambient air on the greenhouse air temperature were investigated through computer simulation experimental analysis for validation of the simulation. The results from this study are summarized as follows: 1) The expected values of inside air temperature for the system solar energy were very much close to the experimental values. 2) In the system using solar energy, the expected values of daytime surface temperature of soil by computer simulation were very much similar to the measured values, but those of nighttime were higher than the measured value by almost $2.5^{\circ}C$. 3) Heat loss of daytime was found to be larger than that of night time as much as 2.0 to 4.2 times for the system using solar energy. 4) In the system using solar energy. while the ambient air temperature varied between $-7^{\circ}C$ and $-3.8^{\circ}C$, the temperature of the inside air was maintained between $0^{\circ}C$ and $22^{\circ}C$. 5) At the minimum ambient temperature of $-7^{\circ}C$, the temperature of the inside air was $0^{\circ}C$.

  • PDF

Growth and salting properties influenced by culture methods, cultivars and storage packaging of kimchi cabbage (Brassica rapa) in spring

  • Lee, Jung-Soo
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.623-634
    • /
    • 2018
  • This experiment was conducted to determine the effects of the pre- and post-harvest variable factors on the processed product of kimchi cabbage. Two kimchi cabbage cultivars, namely 'Chungwang' and 'Dongpung,' were grown in a field and under a plastic greenhouse condition and stored at $5^{\circ}C$ after harvesting with and without low-density polyethylene (LDPE) film packaging. Growths were determined after harvesting while salting characteristics were determined after the processing and storage. The results show that the height, weight and leaf thickness were higher in kimchi cabbages grown in the greenhouse than those grown in the field. The plastic house culture increased the kimchi cabbage growth of the head weight, head height and leaf thickness compared with that of the open field culture. However, the osmolality and firmness were higher in the outdoor cultivated kimchi cabbages. Kimchi cabbage packed in film covered sacks and stored at $5^{\circ}C$ showed lower weight loss than unpacked cabbages during storage. Salt concentration and pH were also affected by the different pre- and post-harvest factors after salting the kimchi cabbages. Salt concentrations of the kimchi cabbage were influenced by various factors such as the cultivars, cultivation methods and storage covering. Though the present findings showed a limited difference in salt concentration and pH between the cultivars of kimchi cabbages, this study suggests that there is a relationship between processed agricultural products and their pre- and post-harvest methods.

수소연료전지차의 도입이 무역에 미치는 효과 분석에 관한 연구 (A Study on the Effects of Supply of Fuel Cell Electric Vehicles(FCEV) on Trade)

  • 오수영;이향숙
    • 무역학회지
    • /
    • 제47권1호
    • /
    • pp.1-12
    • /
    • 2022
  • This study analyzes FCEV among measures to respond to climate change policies. In particular, it proposes alternatives to solve this problem in the trade industry, which relies on transportation sectors with high greenhouse gas emissions such as exports and imports of goods. Therefore, when FCEV is introduced in the transportation sector, changes in CO2 emissions, a greenhouse gas, and changes in logistics costs for changes in CO2 emissions are set through scenarios to evaluate the impact on product trade, such as imports and exports. As a result, the increase in logistics costs due to carbon dioxide emissions affected the import and export volume of goods, and when FCEV was introduced, the export volume would increase by up to 5.6%, and the import volume by up to 30%. In addition, CO2 emissions decreased to about 60% in 2050. Therefore, the introduction of FCEV in the transportation sector will greatly contribute to increasing sales in the trading industry and will be able to solve environmental problems such as greenhouse gas reduction.

열병합발전을 이용한 집단에너지사업의 온실가스 감축효과 (Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation)

  • 신경아;동종인;강재성;임용훈;김다혜
    • 한국기후변화학회지
    • /
    • 제8권3호
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

조직배양 페튜니아의 순화과정에서 광질에 따른 생장반응 특성 (Effects of Acclimatization to Different Light Colors on the Growth of Petunia (Petunia hybrida) in a Greenhouse)

  • 김영선;이긍주
    • 한국환경농학회지
    • /
    • 제42권1호
    • /
    • pp.14-20
    • /
    • 2023
  • Light is an important factor that influences the growth and development of flowering plants. The present study investigated the effects of in vitro acclimatization to different light colors (white light (WL; control), blue light (BL; 447 nm), green light (GL; 519 nm), and red light (RL; 667 nm)) on the growth of petunia (Petunia hybrida) and of hardening cultivation of plant transferred form in vitro to a greenhouse under sunlight. Compared to the control, the shoot length and leaf width of Petunia increased by 42% and 11.7%, respectively, after acclimatization to BL and the shoot growth increased by 29.3% after acclimatization to RL. The chlorophyll and carotenoid contents after acclimatization to BL and GL were 16.7% and 11.3% higher, respectively, and 14.4% and 11.9% higher, respectively, than those in the control. During greenhouse cultivation, the shoot length increased by 16.7% and 11.3%, respectively, after acclimatization to BL and RL, respectively, and the leaf length and leaf width increased by 14.4% and 11.9%, respectively, after acclimatization to GL. While dry weight of root of GL and BL was not significant difference in vitro, increased by 59.0% and 22.9% ex vitro than that of WL. Thus, acclimatization to BL increased the shoot growth and leaf chlorophyll contents, and acclimatization to GL and RL enhanced shoot and root growth, in petunia.