• Title/Summary/Keyword: Greenhouse Gases (GHG)

Search Result 120, Processing Time 0.028 seconds

A Study on the EU Regulation for Reducing CO2 from New Passenger Cars to Prevent Climate Change (지구기후변화 방지를 위한 유럽연합(EU) "신규 승용차 이산화탄소 배출 감축 규칙"에 대한 고찰)

  • Park, Myong Sop;Han, Nak Hyun;Kim, Sang Man
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.63
    • /
    • pp.159-184
    • /
    • 2014
  • Climate change is one of the biggest dangers facing all living creatures in the earth. It has been understood that emissions of greenhouse gases from human activity is the cause of climate change. Cars are responsible for around 12% of total EU emissions of CO2, the main greenhouse gas. The United Nations Framework Convention on Climate Change (UNFCCC or FCCC) is an international environmental treaty adopted at the United Nations Conference on Environment and Development (UNCED) on 9 May, 1992, which entered into force on 21 March 1994. The European Commission first adopted a Community Strategy to reduce CO2 emissions from cars in 1995. On 19 December 2007, the European Commission proposed "Proposal for Setting emission performance standards for new passenger cars to reduce CO2 emissions", which was adopted on 23 April 2009 as "Regulation (EC) No 443/2009". Prior to submitting the Proposal, the European Commission performed impact assessment and prepared impact assessment report which was reviewed by the Impact Assessment Board. The objective of this Regulation is to set emission performance standards for new passenger cars registered in the Community, which forms part of the Community's integrated approach to reducing CO2 emissions from light-duty vehicles while ensuring the proper functioning of the internal market. In the event that a manufacturer fails to meet its target, it will be required to pay an excess emissions premium in respect of each calendar year from 2012 onwards. On 11 March 2014, Regulation (EC) No 333/2014 amending Regulation (EC) No 443/2009 was adopted. Regulation (EC) No 333/2014 amends Regulation (EC) No 443/2009 to implement the modalities of meeting the 95g CO2/km target for new passenger cars to be reached in 2020. As industry benefits from indications of the regulatory regime that would apply beyond 2020, the Regulation includes a further review to take place by, at the latest, 31 December 2014.

  • PDF

Effects of oxygen in the bulk of refuses on nitrification and denitrification -Study on sources of released nitrous oxide using 15N-isotope as a tracer and FISH method- (벌크의 산소농도가 폐기물(廢棄物)의 질산화(窒酸化) 및 탈질(脫窒)에 미치는 영향 -Tracer 로서의 15N 동위원소(同位元素) 및 FISH법(法)을 이용한 아산화질소발생원(亞酸化窒素發生源)의 규명(糾明)-)

  • Hwang, Sun-Jin;Hanaki, Keisuke
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.52-61
    • /
    • 1998
  • Nitrification and denitrification are important processes in the landfill site as they are deeply related with degradation and stabilization of refuse. Also nitrous oxide ($N_2O$) which is released from both nitrification and denitrification is known as greenhouse gas (GHG). The purpose of this study was to clarify the process by which $N_2O$ produced using $^{15}N$ isotope. Nitrate which was labeled to 10.08% with $^{15}KNO_3$ was used and $N_2O$ was analyzed with GC mass. Results was that even also when $O_2$ of bulk was 15%, $N_2O$ was released from denitrification. And as concentrations of $O_2$ increase, sum of $N_2O$ was released from denitrification. And as concentrations of $O_2$ increase, sum of $N_2O$ and $N_2$ was decreased and ratios of $N_2O$ in the reduced gases were increased. FISH technics also adaped to confirm whether which of nitrifiers existed in the substrates. When NEU was used of which the target was ammonia oxidizing bacteria, nitrifier was not detected at all. So it was confirmed that during the reaction denitrification was dominant process. Total bacteria distributions which were detected by EUB probe explained that as $O_2$ increase the number of bacteria also increase, but between the 10-15% of $O_2$ there was no any differences.

  • PDF

Sustaining Low-Carbon Emission Development: An Energy Efficient Transportation Plan for CPEC

  • Zubedi, Asma;Jianqiu, Zeng;Arain, Qasim Ali;Memon, Imran;Khan, Sehrish;Khan, Muhammad Saad;Zhang, Ying
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.322-345
    • /
    • 2018
  • Climate change has become a major challenge for sustainable development of human society. This study is an attempt to analyze existing literature to identify economic indicators that hamper the process of global warming. This paper includes case studies based on various countries to examine the nexus for environment and its relationship with Foreign Direct Investment, transportation, economic growth and energy consumption. Furthermore, the observations are analyzed from the perspective of China-Pakistan Economic Corridor (CPEC) and probable impact on carbon emission of Pakistan. A major portion of CPEC investment is allocated for transportation. However, it is evident that transportation sector is substantial emitter of carbon dioxide (CO2) gas. Unfortunately, there is no empirical work on the subject of CPEC and carbon emission for vehicular transportation. This paper infers that empirical results from various other countries are ambiguous and inconclusive. Moreover, the evidence for the pollution haven hypothesis and the halo effect hypothesis is limited in general and inapplicable for CPEC in particular. The major contribution of this study is the proposal of an energy efficient transportation model for reducing CO2 emission. In the end, the paper suggests strategies to climate researchers and policymakers for adaptation and mitigation of greenhouse gases (GHG).

A Study on Determining Economical Speed of Diesel Freight Locomotive (화물열차의 경제속도 결정에 관한 연구)

  • Kim, Kwang-Tae;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.294-299
    • /
    • 2012
  • Rail transport has been considered an environmental-friendly transport mode compared with other transport modes such as ship, truck, and aircraft. However, air pollutions emitted by diesel locomotives have emerged as social issues. In addition, the railway industry may not be able to avoid a duty of alleviating greenhouse gases emission owing to the Korean government policies for green growth which is an economic paradigm that simultaneously pursues growth and environmental improvement. Moreover, rising oil prices has burdened a train operating company. The purpose of this paper is to develop a methodology of determining an economical speed of diesel freight locomotive from the viewpoint of the train operating company. In the methodology, we first define an operational cost function based on various cost factors and then suggest formula to calculate an economical speed of diesel freight locomotive. To estimate the influence of cost factors such as diesel price, carbon taxes, and time costs on the speed of diesel freight locomotive, sensitivity analysis was conducted.

Analysis of CO2 Reduction effected by GHG·Energy Target Management System (TMS) and Korea Emissions Trading Scheme (ETS) (온실가스·에너지 목표관리제 및 배출권거래제 대상 기업의 명세서를 이용한 온실가스 감축 실적 분석)

  • Lee, Serim;Cho, Yongsung;Lee, Sue Kyoung
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.221-230
    • /
    • 2017
  • There are two main policies to meet the national goal of reducing Greenhouse Gases (GHGs) emissions in Korea towards Paris Agreement. From 2012 to 2014, Target Management System (TMS) was operated and the Emissions Trading Scheme (ETS) has been established since 2015. To compare the impact of TMS and ETS on reducing GHGs, we collected annual GHGs emission reports submitted by individual business entities, and normalized them using a z-variant normalized function. In order to evaluate the impact of those policies, we calculated the amount of GHGs emissions of 73 business entities from 15 business sectors. Those entities emitted $508million\;CO_2eq$, which is 74% of total national GHGs emissions in 2014. The main results of analysis indicate that accumulated GHGs emissions during the period 2012 to 2014 affected by TMS was higher than the national goal of GHGs emission reduction, and only the GHGs emissions in 2014 were in the range of allowed GHGs emissions, set by the Government. In 2015, when ETS initiated, total GHGs emission trading was $4.84million\;tCO_2eq$, which is only 0.9% of total allowance in 2015. However, more than 50% of business entities, who got the allowance of GHGs emission given by the Government, met the goal of GHGs emissions. Particularly, 27 of 73 business entities reduced GHGs more under the ETS rather than the TMS. Even though we analyzed only 4 years' data to demonstrate the impact of TMS and ETS, it is expected to commit the national goal of GHGs reduction target by TMS and ETS.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

GHGs Emissions Calculation Method and Influence Factors (온실가스 배출량 산정 방법 및 영향 요인 연구)

  • Choi, Seonghun;Chang, Hyunho;Yoon, Byungjo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.550-557
    • /
    • 2020
  • Purpose: Greenhouse gases are one of the major causes of global warming, a global disaster. In this study, the priority that affects when calculating the GHG emissions in the road sector is accurately calculated based on the speed of individual vehicles from the existing section average speed. I have the purpose of finding a possible factor. Method: A comparative analysis is conducted between the conventional method of the general passage section, the rest area section, the entrance section, and the confluence section of the highway and the speed-based emission calculation method of individual vehicles. Result: As a result of analyzing a total of 6 sections of the Gyeongbu Expressway, it was found that the standard deviation of the speed and the congestion of the sections had a great influence. Conclusion: When comparing the existing GHG emission calculation method with the speed-based emission calculation method of individual vehicles, it is clear that the speed-based method of individual vehicles is more precise. However, since it is difficult to apply it all over the country, this study compares the existing method with the speed-based method of individual vehicles and presents factors that have a significant difference.

Environmental Analysis of Waste Cable Recycling Process using a Life Cycle Assessment Method (전과정평가기법을 활용한 폐전선 재자원화 공정의 환경성 평가)

  • Jang, Mi-Sun;Seo, Hyo-Su;Park, Hee-Won;Hwang, Yong-Woo;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The development of the electrical, electronic, and telecommunication industries has increased the share of electricity in total energy consumption. With the enforcement of the Act on the Promotion of the Development, Use, and Diffusion of New and Renewable Energy in 2021, the mandatory supply ratio of new and renewable energy is expected to expand, and the amount of waste cables generated in the stage of replacing and discarding cables used in the industry is also expected to increase. The purpose of this study was to quantify the environmental burden of waste cable recycling through the life cycle assessment (LCA) method. The results showed that the higher the amount of glue contained in the waste cable, the greater was the amount of fine dust and greenhouse gases generated. In addition, by assigning weights to 10 environmental burden items, it was confirmed that the marine aquatic eco-toxicity potential (MAETP) and human toxicity potential (HTP) had the greatest environmental burden. The main causes were identified as heptane and ethanol, which were the glue contained in the waste cable and the cleaning solutions used to remove them. Therefore, it is necessary to refrain from using glue in the cable production process and reduce the environmental burden by reducing the use of waste cable cleaning solutions used in the recycling process or using alternative materials.

Analysis of research trends in methane emissions from rice paddies in Korea

  • Choi, Eun-Jung;Lee, Jae-Han;Jeong, Hyun-Cheol;Kim, Su-Hun;Lim, Ji-Sun;Lee, Dong-Kyu;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.463-476
    • /
    • 2017
  • Climate change is considered as the greatest threat to our future and descendants. The Korean government has set a target for 2030 to reduce emission of greenhouse gases (GHGs) by 37% from the business-as-usual levels which are projected to reach 851 million metric tons of $CO_2eq$ (Carbon dioxide equivalent). In Korea, GHGs emission from agriculture account for almost 3.1% of the total of anthropogenic GHGs. The GHGs emitted from agricultural land are largely classified into three types: carbon dioxide ($CO_2$), methane ($CH_4$), and nitrous oxide ($N_2O$). In Korea, rice paddies are one of the largest agricultural $CH_4$ sources. In order to analyze domestic research trends related to $CH_4$ emission from rice paddies, 93 academic publications including peer reviewed journals, books, working papers, reports, etc., published from 1995 to September 2017, were critically reviewed. The results were classified according to the research purposes. $CH_4$ characteristics and assessment were found to account for approximately 65.9% of the research trends, development of $CH_4$ emission factors for 9.5%, $CH_4$ emission reduction technology for 14.8%, and $CH_4$ emission modeling for 6.3%, etc. A number of research related to $CH_4$ emission characteristics and assessment have been studied in recent years, whereas further study on $CH_4$ emission factors are required to determine an accurate country-specific GHG emission from rice paddies. Future research should be directed toward both studies for reducing the release of $CH_4$ from rice paddies to the atmosphere and the understanding of the major controlling factors affecting $CH_4$ emission.

Research on Desulfurization and Dust Removal Characteristics in Oxy-PC Combustion system (순산소 석탄연소 시스템에서의 탈황·집진 기초 특성)

  • Min, Tai Jin;Keel, Sang In;Yun, Jin Han;Roh, Seon Ah;Han, Bang Woo;Lee, Hyung Keun;Kim, Sang Soo;Lee, Kang Soo;Seo, Sang Il;Kim, Young Ju
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.116-120
    • /
    • 2010
  • $CO_2$ is regarded as one of the greenhouse gases(GHG), which is the main reason of climate change. In order to achieve lower $CO_2$ emissions, several efforts have been conducted worldwide. $CO_2$ capture & storage(CCS) technology development is needed for a coal-fired combustion power plant because of huge $CO_2$emission. Oxy fuel combustion, one of the CCS technologies has been considered as a primary concern, nowadays. Oxy-fuel combustion needs flue gas recirculation(FGR) for stable operation and enrichment of $CO_2$ concentration in the flue gas. FGR adoption for oxy-fuel combustion requires development of effective desulfurization and dust removal technology. In this study, desulfurization characteristics of lime and dust removal technology have been researched in the laboratory scale coal combustor.