• Title/Summary/Keyword: Greenhouse Gas Model

Search Result 306, Processing Time 0.025 seconds

Analysis of Factors Promoting Overseas Greenhouse Gas Reduction Projects (해외 온실가스 감축 사업 촉진 요인 분석)

  • Kim, Jihoon;Lim, Sungsoo
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.2
    • /
    • pp.161-182
    • /
    • 2024
  • The purpose of this study is to highlight overseas reductions as one of the measures to achieve Korea's 2030 NDCs, and to derive factors to promote overseas greenhouse gas reduction projects. To this end, a survey was first conducted on greenhouse gas management companies, which are the main entities for reducing greenhouse gas emissions. The contents of the survey are divided into three categories: awareness of greenhouse gas reduction projects, institutional and technical sectors, and government support and difficulties. Specifically, the perception section on greenhouse gas reduction projects examined the greenhouse gas reduction methods currently implemented or under consideration in the future. In the area of government support and difficulties, difficulties in promoting overseas greenhouse gas reduction projects were investigated. The results of the analysis using the probability selection model are as follows. First, the greater the greenhouse gas intensity, the degree of dedicated manpower, and the larger the size according to the company's business field, the higher the interest in overseas reduction projects. Second, there was discrimination in the method of reducing greenhouse gas emissions according to the size variables of the company, the degree of greenhouse gas intensity, the degree of having dedicated manpower, and the business field. Lastly, in the case of small businesses, difficulties in business promotion due to the lack of greenhouse gas reduction technology were found to be the biggest cause than other problems. Therefore, it is necessary to induce the reduction of greenhouse gas emissions by introducing foreign technologies to support greenhouse gas reduction technologies for small and medium-sized enterprises, and to provide support such as training courses for professional manpower and the operation of portals for information provision at the government level.

Analysis of Potential Reductions of Greenhouse Gas Emissions on the College Campus through the Energy Saving Action Programs

  • Woo, Jeongho;Choi, Kyoung-Sik
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.191-197
    • /
    • 2013
  • Republic of Korea announced the reduction target to be around 30% of business as usual greenhouse gas emissions by 2020. College campuses were ranked at the 5th of high energy consumption areas in the building sectors. Target management scheme was designed to set greenhouse gas emissions target including several college campuses. Previous studies showed the amount of greenhouse gas emissions with several assumptions such as the applications of renewable energy systems and light emitting diode lamps, etc. Long-range Energy Alternatives Planning model was utilized to simulate future greenhouse gas emissions. This study sets standard model labs for energy saving action programs by applying guidance studies. It has been deduced that energy saving action programs was responsible for reducing 949.5 kWh for each standard model lab and the total reduction of all 59 model labs in the Engineering College building has been calculated to 56,020.5 kWh. The objective of the study is to provide guidelines on standard model laboratory for greenhouse gas emissions reduction on the campus.

Analysis of the Green House Gas Reduction Scenarios in the Cement Manufacturing Industry (시멘트산업의 온실가스 배출저감 시나리오 분석)

  • Kim, Hyun-Suk;Kang, Hee-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.912-921
    • /
    • 2006
  • This study examines greenhouse gas reduction potentials in cement manufacturing industry of Korea. An energy system model in the MARKAL (MARKet ALlocation) modeling framework was used in order to identify appropriate energy technologies and to quantify their possible implications In terms of greenhouse gas reduction. The model is characterized as mathematical tool for the long term energy system analysis provides an useful informations on technical assessment. Four scenarios are developed that covers the ti me span from 2000 to 2020. Being technology as a fundamental driving factor of the evolution of energy systems, it is essential to study the basic mechanisms of technological change and its role in developing more efficient, productive and clean energy systems. For this reasons, the learning curves on technologies for greenhouse gas reduction is specially considered. The analysis in this study shows that it is not easy to mitigate greenhouse gas with low cost in cement manufacturing industry under the current cap and trade method of Kyoto protocol.

An Analysis of Greenhouse Gas Emission and Role of Gas Generation in Electric Sector (발전부문 온실가스배출과 가스발전의 역할 분석)

  • Kang, Hee-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.11-16
    • /
    • 2006
  • The purposes of this study is to develop a domestic MARKAL(MARKet ALlocation) model with construction of database system to find the technology mix for the electricity generation market in Korea. The MARKAL model is officially used for national energy system optimization in the International Energy Agency(IEA), and the role is becoming more important in relation to analyze the greenhouse gas mitigation potential and to evaluate the technologies. Four scenarios specially emphasized on the greenhouse gas reduction and technology mix of electric generation were applied, each of them covering the analysis periods between 2004 and 2040.

  • PDF

Application of LEAP Model to Reduce GHG Emissions from Residential Sector (LEAP 모형을 이용한 가정 부문 온실가스 저감효과 분석)

  • Jo, Mi-hyun;Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • This study uses the LEAP model that is a long-term energy analysis model to analyze reduction potential on S city residential sector energy usage for greenhouse gas emission. Energy consumption of S-si in 2009 is consumed most in residential and commerce sector by 39.1%. Also, energy and greenhouse gas emission of residential sector is expected to increase due to increase of households. Therefore, greenhouse gas reduction measures are desperately required in residential sector. For this study recognizes energy consumption of S-si residential sector and has established reduction measure of S-si residential sector greenhouse gas through literature search on domestic and foreign climate change correspondence policies. Also, construction of greenhouse gas reduction potential by reduction measures through LEAP model. There were a total of 5 reduction measures scenarios is Reference Scenario, LED Lighting, Energy Alternative, Green Life Practice, and Total Reduction Measure. As a result, greenhouse gas emission of Light Emitting Diode Lightings by 2020 was $1,181.0thousand\;tonCO_2eq$, decrease of 6.1% compared to the Reference Scenario and Greenhouse gas emission of Energy Alternative by 2020 was $1,171.6thousand\;tonCO_2eq$, decrease of 6.8% compared to the Reference Scenario. Greenhouse gas emission of Green Life Practice by 2020 was $1,128.7thousand\;tonCO_2eq$, decrease of 10.2% compared to the Reference Scenario. For Total Reduction Measures by 2020 emission was $966.9thousand\;tonCO_2eq$, decrease 23.1% compared to Reference Scenario.

A Study on the Model of Competitive Electricity Market Considering Emission Trading (온실가스 배출권 거래제도를 고려한 경쟁적 전력시장 모형 연구)

  • Kim, Sang-Hoon;Lee, Kwang-Ho;Kim, Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1496-1503
    • /
    • 2009
  • The United Nations Framework Convention on Climate Change (UNFCCC) is an international environmental treaty to stabilize greenhouse gas concentrations in the atmosphere. In order to fulfil the commitments of the countries in an economically efficient way, the UNFCCC adapted the emission trading scheme in the Kyoto Protocol. If the UNFCCC's scheme is enforced in the country, considerable changes in electric power industry are expected due to the imposed greenhouse gas emission reduction. This paper proposes a game theoretic model of the case when generation companies participate in both competitive electricity market and emission market simultaneously. The model is designed such that generation companies select strategically between power quantity and greenhouse gas reduction to maximize their profits in both markets. Demand function and Environmental Welfare of emission trading market is proposed in this model. From the simulation results using the proposed model the impact of the emission trading on generation companies seems very severe in case that the emission prices are significantly high.

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

Analysis of Greenhouse Gas Reduction Potentials in a Electronic·Electrical components company using LEAP Model (LEAP 모형을 활용한 전자소재·부품업의 온실가스 감축 잠재량 분석)

  • Park, Yeong-Su;Cho, Young-Hyuck;Kim, Tae-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.667-676
    • /
    • 2013
  • This study analyzed the energy demand, greenhouse gas emission and greenhouse gas reduction potential of Electronic Electrical components company. The LEAP model targeting long term energy plan was used to establish the most efficient plan for the companies by examining the climate change policy of government and the countermeasures by companies. A scenario was created by having 11 greenhouse gases reduction plans to be introduced from 2011 as the basic plan. Regarding input data, energy consumption by business place and by use, number of employee from 2009 to 2012, land area and change in number of business places were utilized. The study result suggested that approximately 13,800 TJ of energy will be spent in 2020, which is more than 2 times of 2012 energy consumption. When the integrated scenario based on the reduction plan of companies would be enforced, approximately 3,000 TJ will be reduced in 2020. The emission of greenhouse gases until 2020 was forecasted as approximately 760,000 ton $CO_2eq$. When the integrated scenario would be enforced, the emission will be approximately 610,000 ton $CO_2eq$, which is decrease by approximately 150,000 ton $CO_2eq$. This study will help the efficient responding of eElectronic Electrical components company in preparing detail report on objective management system and enforcement plan. It will also contribute in their image as environment-friendly companies by properly responding to the regulation reinforcement of government and greenhouse gases emission target based on environment policy.

Estimation of Greenhouse Gas Emissions from Transport Sector in New Town Development (신도시 계획단계에서의 교통부문 온실가스 배출량 산정 및 감축효과 분석방법론 연구)

  • Han, Sang-Jin;Park, Kyung-Uk;Park, Su-Jin
    • Journal of Environmental Policy
    • /
    • v.12 no.4
    • /
    • pp.45-69
    • /
    • 2013
  • This study estimates baseline greenhouse gas emissions from transport sector when a new town is developed. It has adopted a general greenhouse gas estimation model developed by Schipper, celine, Roger(2000) for the estimation, and showed how various transport related statistics can be utilized in detail. Particularly, it has produced unit greenhouse gas emission factor per vehicle types, vehicle-km, and trip-km. To evaluate effects of greenhouse gas reduction policies, it has calculated how much emissions will be reduced from bicycle promotion. It has turned out that about 369 thousand tons of carbon dioxide will be emitted from transport sector once the 1st Geomdan New Town is developed in Incheon metropolitan city. If the policy of bicycle promotion can attract people to use bicycle as much as 5% of total trips, then it can reduce about 1,869 tons of carbon dioxide.

  • PDF

Analysis of Greenhouse Gas Reduction Potentials in a University using Bottom-up Model (상향식 모형을 이용한 대학의 온실가스 감축 잠재량 평가)

  • Yoo, Jung-Hwa;Park, Nyun-Bae;Jo, Mi-hyun;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.3 no.3
    • /
    • pp.183-193
    • /
    • 2012
  • In this study, the S University's energy usage, greenhouse gas emissions situation and potential reduction amount were analyzed using a long-term energy analysis model, LEAP. In accordance with the VISION 2020 and university's own improvement plans, S University plans to complete a second campus through expansion constructions by 2020 and by allocating the needed land. Accordingly, increases in energy usage and greenhouse gas emissions seem inevitable. Hence, in this study, the calculations of potential reduction amount by 2020 were attempted through the use of LEAP model by categorizing the energy used based on usage types and by proposing usage typebased reduction methods. There were a total of 4 scenarios: a standard scenario that predicted the energy usage without any additional energy reduction activity; energy reduction scenario using LED light replacement; energy reduction scenario using high efficiency building equipment; and a scenario that combines these two energy reduction scenarios. As scenario-based results, it was ascertained that, through the scenario that had two other energy reduction scenarios combined, the 2020 greenhouse gas emissions amount would be 14,916 tons of $CO_2eq$, an increase of 43.7% compared to the 2010 greenhouse gas emissions amount. Put differently, it was possible to derive a result of about 23.7% reduction of the greenhouse gas emissions amount for S University's greenhouse gas emissions amount through energy reduction activities. In terms of energy reduction methods, changing into ultra-high efficiency building equipment would deliver the most amount of reduction.