• 제목/요약/키워드: Green-emitting phosphor

검색결과 85건 처리시간 0.025초

2가 유로피움으로 활성화된 NaCaPO4의 합성과 광 특성 (Preparation and Photoluminescent Properties of NaCaPO4 Activated by Divalent Europium)

  • 김동진;박인용;이종원;김규진;김병규
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.624-628
    • /
    • 2006
  • In this study, divalent europium-activated $NaCaPO_4$ green phosphor powders were prepared by the chemical synthetic method followed by heat treatment in reduced atmosphere, and the crystal structures, morphologies and photoluminescent properties of the powders were investigated by x-ray powder diffraction, scanning electron microscope and spectrometer for the first time. The effects of Ca/P and Na/Ca mole ratios on the final products were also investigated. The influences of input amount change of europium as the activator on the light emission intensity were studied, and the resulting concentration quenching phenomenon was observed. The optimized synthesis conditions obtained in this study were Ca/P mole ratio 1.2, Na/Ca mole ratio 3.0 and 4 mole%Eu. The peak wavelength was 505 nm for all the samples. The result of excitation spectrum measurement indicated that the excitation efficiency was high for the long-wavelength UV region. It was thus concluded that the samples prepared in this study can be successfully applied for the light-emitting devices such as LED excited with long-wavelength UV light sources.

상업용 유리프릿의 소결 공정을 이용한 내수성을 갖는 CsPbBr3/Glass 세라믹 복합체의 제작 (Simple Fabrication of Green Emission and Water-Resistant CsPbBr3 Encapsulation Using Commercial Glass Frits)

  • 문나은;김성훈
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.54-59
    • /
    • 2021
  • In this work, narrow-band green-emitting CsPbBr3 particles are embedded in commercialized glass composites by a facile dry process. By optimizing the method through sintering in glass frit (GF) composites including CsBr and PbBr2, used as precursors, the encapsulation of CsPbBr3 particles made them waterproof with green fluorescence. To improve the fluorescent properties by reducing aggregation of CsPbBr3, fumed silica (FS) is additionally used to help particles avoid bulking up in the glass matrix. The CsPbBr3 perovskite/glass composites are characterized using scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) maps, which support the existence of CsPbBr3 particles in the glass matrix. The photoluminescence (PL) properties demonstrate that the emission spectrum peak, full width at half maximum (FWHM), and photoluminescence quantum yield (PLQY) values are 519 nm, 17 nm, and 17.7 %. We also confirm the water-resistant properties. To enhance water/moisture stability, the composite sample is put directly into water, with its PLQY monitored periodically under UV light.

인광을 이용한 유기 EL 소자 특성 연구 (Study on the Characteristics of Organic EL Device Using Phosphorescence)

  • 김영관;손병청;김준호
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.186-190
    • /
    • 2001
  • By fabricating the organic light-emitting devices (OLEDs) based on phosphorescent material, the internal quantum efficiency can reach 100%, compared to 25% in the case of the fluorescent material. Thus, the phosphorescent OLEDs have recently been extensively studied and showed higher internal quantum efficiencies then the conventional OLEDs. In this study, we investigated the characteristics of the phosphorescent OLEDs, with the green emitting phosphor, $Ir(ppy)_{3}$, (tris(2-phenylpyridine)iridium). The devices with a structure of $ITO/TPD/Ir(ppy)_{3}$ doped in the host material $/BCP/Alq_{3}/Li:Al/Al$ were fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of $Ir(ppy)_{3}$, we fabricated several devices and investigated the device characteristics. OLEDs doped into BCP by 10% showed the best characteristics. For 10% doped OLEDs, the maximum luminance of was over 10000 $cd/m^{2}$, and the maximum power efficiency was 7.14 lm/W.

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.

기상 공정에 의한 구형 형상의 헥사알루미네이트계 형광체 제조 (Preparation of Hexaaluminate Phosphor Particles with Spherical Shape by Gas Phase Reaction Process)

  • 정대수;홍승권;구혜영;주서희;강윤찬
    • Korean Chemical Engineering Research
    • /
    • 제43권5호
    • /
    • pp.616-620
    • /
    • 2005
  • Ammonium dihydrogen phosphate 융제의 첨가가 고온 분무열분해 공정에 의해 합성된 녹색 발광의 헥사알루미네이트계 형광체의 형태 및 발광 특성에 미치는 영향을 보았다. 융제를 함유하지 않은 분무용액으로부터 반응기 온도 $900^{\circ}C$ 에서 $1,650^{\circ}C$ 사이에서 합성된 분말은 매우 속이 빈 형태를 가졌다. 반면에 ammonium dihydrogen phosphate 융제를 첨가한 분무용액으로부터 반응기 온도 $900^{\circ}C$ 에서 $1,650^{\circ}C$ 사이에서 합성된 분말은 완벽한 구형 형상을 가지면서 치밀한 구조를 가졌다. 반응기 온도 $1,600^{\circ}C$ 이상에서 ammonium dihydrogen phosphate 융제를 첨가한 분무용액으로부터 마그네토플룸비아트 구조를 가지는 헥사알루미네이트 형광체 분말이 합성되었다. Ammonium dihydrogen phosphate 융제는 저온에서 형광체의 발광 특성을 증가시키는데 효과적이었다. 반응기 온도 $1,650^{\circ}C$의 환원분위기하에서 분무열분해 공정에 의해 직접 제조된 형광체는 융제의 첨가 유무에 무관하게 후열처리 과정을 통해 최적화된 형광체와 유사한 발광 세기를 가졌다.

Synthesis of Nanoparticles via Surface Modification for Electronic Applications

  • Lee, Burtrand I.;Lu, Song-Wei
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.35-58
    • /
    • 2000
  • The demand for sub-micrometer or nanometer functional ceramic powders with a better suspension behavior in aqueous media in increasing. Redispersible barium titanate (BT) nanocrystals, green light emitting Mn2+ doped Zn$_2$SiO$_4$ and ZnS nanoparticle phosphors were synthesized by a hydrothermal method or chemical precipitation with surface modification. The nanoparticle redispersibility for BT was achieved by using a polymeric surfactant. X-ray diffraction(XRD) results indicated that the BT particles are of cubic phase with 80 nm in size. XRD results of zinc silicate phosphor indicate that seeds play an important role in enhancing the nucleation and crystallization of Zn$_2$SiO$_4$ crystals in a hydrothermal condition. This paper describes and discuss the methods of surface modification, and the resulting related properties for BT, zinc silicate and zinc sulfide.

  • PDF

White Light Emitting Diodes for Illumination

  • Choi, Kyoung-Jae;Park, Joung-Kyn;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1090-1092
    • /
    • 2006
  • There is provided white light illumination system including a radiation source, a first luminescent material having a peak emission wavelength of about 575 to about 620 nm, a second luminescent material having a peak emission wavelength of about 495 to about 550 nm, which is different from the first luminescent material and a third luminescent material having a peak emission wavelength of about 420 to about 480 nm, which is different from the first and second luminescent materials. The LED may be a UV LED and the luminescent materials may be a blend of three phosphors. A human observer perceives the combination of the blue, green and red phosphor emissions as white light.

  • PDF

RF 스퍼터링 방법에 의한 ZnGa2O4:Mn 박막의 성장거동과 발광특성 (Growing and Luminous Characterization of ZnGa2O4:Mn Thin Film Deposited by RF Magnetron Sputtering)

  • 정승묵;김영진
    • 한국세라믹학회지
    • /
    • 제40권7호
    • /
    • pp.652-656
    • /
    • 2003
  • 녹색발광을 하는 스피넬 구조의 ZnGa$_2$O$_4$:Mn 형광체박막을 산소분압비를 증착변수로 이용하여 rf 마그네트론 스퍼터링법으로 증착하였으며, 증착된 박막을 산화, 진공+질소 분위기에서 각각 열처리를 하였다. 증착시 산소분압비 및 열처리시 산소분위기가 형광체 박막의 성장 및 발광특성에 미치는 영향을 관찰하였다. 열처리시 박막의 산화를 막을수록 발광특성이 향상되는 것으로 나타났다.

Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자 (Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant)

  • 노현숙;이창희;윤호신;강윤찬;박희동;박승빈
    • Korean Chemical Engineering Research
    • /
    • 제40권6호
    • /
    • pp.752-756
    • /
    • 2002
  • PDP(Plasma Display Panel)용 녹색 형광체인 $Zn_2SiO_4:Mn$ 형광체의 제조에 있어 콜로이드 분무 열분해법을 도입하고, $Zn_2SiO_4$ wellimite 결정의 $Si^{4+}$ 자리를 치환하는 $Gd^{3+}/Li^+$ 부활성제를 첨가하여 형광체의 발광특성을 향상시키고자 하였다. 14 nm 크기의 fumed silica 입자를 규소 전구체로 도입한 콜로이드 분무열분해법에 의해서 제조되어진 $Zn_2SiO_4:Mn$ 입자는 응집이 없는 구형의 형상, 작은 입자 크기 및 좁은 입도 분포를 가졌다. $Gd^{3+}/Li^+$ 함량은 $Zn_2SiO_4:Mn$ 형광체 입자의 발광특성에 영향을 끼쳤으며, 적정한 함량의 $Gd^{3+}/Li^+$ 부활성제를 첨가함으로써 진공 자외선하에서 형광체의 발광휘도를 향상시키고, 잔광시간을 크게 줄일 수 있었다. 분무 열분해법에 의한 $Gd^{3+}/Li^+$이 코도핑된 $Zn_2SiO_4:Mn$ 형광체 입자의 제조에 있어서 후열처리 온도는 형광체의 발광특성을 결정짓는 주요한 인자이다. 0.1 mol%의 $Gd^{3+}/Li^+$ 부활제를 포함하고 $1,145^{\circ}C$ 온도에서 소결된 $Zn_2SiO_4:Mn$ 형광체 입자는 상업용 형광체에 비해 5% 높은 발광 휘도과 5.7 ms의 잔광시간을 가졌다.

ZnGa$_{2}$O$_{4}$:Mn,O 형광체의 휘도 및 색도 특성 (Brightness and chromaticity characteristics of ZnGa$_{2}$O$_{4}$:Mn,O phosphors)

  • 박용구;한정인;곽민기;한종근;주성후
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권3호
    • /
    • pp.262-267
    • /
    • 1997
  • In order to improve the brightness and chromaticity of green emitting low voltage phosphor for FED, we examine PL, PLE and CL emission characteristics of ZnGa$_{2}$O$_{4}$:Mn,O prepared in Ar and vacuum. ZnGa$_{2}$O$_{4}$:Mn,O sintered in vacuum shows about 16 times as bright as the one fabricated in Ar and excellent chromaticity. In PL emission spectra of ZnGa$_{2}$O$_{4}$:Mn,O at low temperature of 9 K, two peaks are observed at 504 nm and 513 nm. At room temperature, the two peaks are superimposed due to the lattice thermal vibrational energy, and only one peak is observed at 509 nm. From PLE measurements, it is believed that the energy levels of the host lattice and Mn ions are coexisted. The energy transfer from the host lattice to the emission center of Mn$^{2+}$ ions occurs.s.

  • PDF