• Title/Summary/Keyword: Green-emitting phosphor

Search Result 85, Processing Time 0.026 seconds

Effects of heat treatment and substrates on luminescent characteristics of $ZnGa_O_4:Mn$ thin film phosphor (열처리조건과 기판이 $ZnGa_O_4:Mn$ 박막 형광체의 발광특성에 미치는 영향)

  • Chung, Sung-Mook;Kim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.181-184
    • /
    • 2004
  • The green emitting phosphor, $ZnGa_2O_4:Mn$ thin film with spinel structure were deposited by rf magnetron sputtering. Thin film phosphors were heat-treated in nitrogen, vacuum and air atmosphere, respectively. The effects of the substrates, heat-treatment conditions and the sputtering parameters were investigated. The growing behavior and luminescent properties of thin films depend on the crystallinity of the substrates. The Ga/Zn atomic ratios and luminescent characteristics were dependent on the annealing conditions.

  • PDF

Low-voltage cathodoluminescent Characteristics of ZnGa$_2$O$_4$ : Mn phosphors

  • 조성희;유재수;이종덕;이중환
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.57-62
    • /
    • 1997
  • Green-emitting $ZnGa_2O_4$ : Mn phosphors were synthesized by a thermal method and their low-voltage cathodoluminescent characteristics were examined for the field emitter display (FED) application. Low efficiency of $ZnGa_2O_4$ : Mn phosphors could be ascribed to the low penetration depth of into phosphors, which might results in charge accumulation on the phosphors screen. For increasing cathodoluminescent of $ZnGa_2O_4$ : Mn under low voltage excitation, wide band-gap oxide materials were added to the $ZnGa_2O_4$: Mn powder. It is found that the luminance can be increased by 20%. Measurement of leakage current on the phosphor screen shows that the enhancement of low-voltage cathodoluminescent by additive materials is mainly due to the consumption of surface charges on the phosphor.

  • PDF

Luminescence properties of $ZnGa_{2}O_{4}$ based phosphors

  • Singh Binod Kumar;Ryu Hojin;Chang Ho-Jung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.35-39
    • /
    • 2005
  • Phosphor powders of zinc gal late added with Mg and rare-earth elements were prepared by sol id state reaction to improve luminescent properties. Green emitting $ZnMnGa_{2}O_{4}$ reached maximum intensity at Mn=0,005 mole$\%$ and further improvement was achieved by addition of $Mg^{2+}$. Tm, Mg-added zinc gallate phosphor exhibited a strong blue band emission, peaking at about 420 nm with the maximum intensity at the concentration of 0.003 mole$\%$ Mg and 0.015 mole$\%$ Tm. Deepening of the potential wells of the ground and excited states was suggested to be the cause for the enhancement in emission intensity at optimal doping of Mg and Tm.

  • PDF

Development of Red CaAlSiN3:Eu2+ Phosphor in Glass Ceramic Composite for Automobile LED with High Temperature Stability (고온 안정성이 우수한 자동차 LED용 Red CaAlSiN3:Eu2+ 형광체/Glass 세라믹 복합체 개발)

  • Yoon, Chang-Bun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.324-329
    • /
    • 2018
  • Red phosphor in glasses (PiGs) for automotive light-emitting diode (LED) applications were fabricated with 620-nm $CaAlSiN_3:Eu^{2+}$ phosphor and Pb-free silicate glass. PiGs were synthesized and mounted on high-power blue LED to make a monochromatic red LED. PiGs were simple mixtures of red phosphor and transparent glass powder. After being fabricated with uniaxial press and CIP at 300 MPa for 20 min, the green bodies were thermally treated at $550^{\circ}C$ for 30 min to produce high dense PiGs. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30% phosphor had a full sintered density. Changes in photoluminescence spectra and color coordination were studied by varying the thickness of plates that were mounted after optical polishing. As a result of the optical spectrum and color coordinates, PiG plate with $210{\mu}m$ thickness showed a color purity of 99.7%. In order to evaluate the thermal stability, the thermal quenching characteristics were measured at temperatures of $30{\sim}150^{\circ}C$. The results showed that the red PIG plates were 30% more thermally stable compared to the AlGaInP red chip.

Photoluminance Properties of ${Al_3}{GdB_4}{O_{12}}$ Phosphors Activated by $Tb^{3+} and Eu^{3+}$ ($Tb^{3+}$ 와 Eu^{3+}$로 활성화시킨${Al_3}{GdB_4}{O_{12}}$ 형광체의 발광 특성)

  • Kim, Ki-Woon;Kang, Sei-Sun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2000
  • The new green $Al_3GdB_4O_{12}:Tb^{3+} and red Al_3GdB_4O_{12}:Eu_{3+}$ phosphors were synthesized and then characterized their optical properties for PDP application. And also the photoluminescence properties of these phosphors were compared with the commercial green $Zn_2SiO_4:Mn^{2+} and (Y,Gd)BO_3: Eu^{3+}$ red PDP phosphors. The phosphors were synthesized by solid state reaction at 115$0^{\circ}C$ for 4hr. It was found that the emitting brightness of $Al_3GdB_4O_{12}:Tb^{3+}$(15mol%) green phosphor under 147nm excitation was higher than that of commercial $Zn_2SiO_4: Mn^{2+}$ green PDP phosphor. However, the color coordinate of this new green phosphor was inferior to the commercial one. On the other hand, the emitting intensity of $Al_3GdB_4O_{12}:Eu^{3+}$(15mol%) red phosphor was smaller than the $commercial(Y,Gd)BO_3: Eu^{3+}$ red one, but the CIE coordinate was slightly improved. The excitation spectrum showed that $Al_3GdB_4O_{12}$ phosphors had a strong excitation band at $\lambda=160nm$ associated with the host absorption. And the photoluminance excitation (PLE) intensity in VUV range for $Al_3GdB_4O_{12}:Tb^{3+}$ green phosphor was higher than that of $Zn_2SiO_4: Mn^{2+}$, but the PLE intensity of $Al_3GdB_4O_{12}:Eu^{3+}$ red phosphor was smaller than $(Y,Gd)BO_3: Eu^{3+}$.

  • PDF

Synthesis and Luminescent Properties of $RE^3+(Eu^3+\;and\;Tb^3+$) Ions Activated CaGd4O7 Novel Phosphors

  • Pavitra, E.;Raju, G.Seeta Rama;Ko, Yeong-Hwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.359-359
    • /
    • 2012
  • Trivalent rare-earth ($RE^{3+}=Eu^{3+}\;and\;Tb^{3+}$) ions activated $CaGd_4O_7$ phosphors were synthesized by a sol-gel process. After annealing at $1,500^{\circ}C$, the XRD patterns of the phosphor confirmed their monoclinic structure. The photoluminescence excitation spectra of $Eu^{3+}$ and $Tb^{3+}$ doped $CaGd_4O_7$ phosphor shows the broad-band excitations in the shorter wavelength region due to charge transfer band of completely filled $O^{2-}$ to the partially filled $Eu^{3+}$ ions and f-d transitions of $Tb^{3+}$ ions, respectively. The photoluminescence spectra show that the reddish-orange ions and green emission for $Eu^{3+}$ and $Tb^{3+}$ ions, respectively. Owing to the importance of thermal quenching property in the technological parameters, the temperature-dependent luminescence properties of these phosphors were measured for examing the suitability of their applications in the development of light emitting diodes (LEDs). In addition to those measurements, the cathodoluminescence properties were examined by changing the acceleration voltage and filament current. The calculated chromaticity coordinates of these phosphors were close proximity to those of commercially available phosphors for LED and field emission display devices.

  • PDF

Effect of the Crystalline Phase of Al2O3 Nanoparticle on the Luminescence Properties of YAGG:Ce3+ Phosphor under Vacuum UV Excitation (진공자외선 여기에 의한 YAGG:Ce3+ 형광체의 광발광 특성에 미치는 Al2O3 나노입자 원료의 결정상의 영향)

  • Wu, Mi-Hye;Choi, Sung-Ho;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.195-201
    • /
    • 2012
  • $Ce^{3+}$-doped yttrium aluminum gallium garnet (YAGG:$Ce^{3+}$), which is a green-emitting phosphor, was synthesized by solid state reaction using ${\alpha}$-phase or ${\gamma}$-phase of nano-sized $Al_2O_3$ as the Al source. The processing conditions and the chemical composition of phosphor for the maximum emission intensity were optimized on the basis of emission intensity under vacuum UV excitation. The optimum heating temperature for phosphor preparation was $1550^{\circ}C$. Photoluminescence properties of the synthesized phosphor were investigated in detail. From the excitation and emission spectra, it was confirmed that the YAGG:$Ce^{3+}$ phosphors effectively absorb the vacuum UV of 120-200 nm and emit green light positioned around 530 nm. The crystalline phase of the alumina nanoparticles affected the particle size and the luminescence property of the synthesized phosphors. Nano-sized ${\gamma}-Al_2O_3$ was more effective for the achievement of higher emission intensity than was nano-sized ${\alpha}-Al_2O_3$. This discrepancy is considered to be because the diffusion of $Al^{3+}$ into $Y_2O_3$ lattice is dependent on the crystalline phase of $Al_2O_3$, which affects the phase transformation of YAGG:$Ce^{3+}$ phosphors. The optimum chemical composition, having the maximum emission intensity, was $(Y_{2.98}Ce_{0.02})(Al_{2.8}Ga_{1.8})O_{11.4}$ prepared with ${\gamma}-Al_2O_3$. On the other hand, the decay time of the YAGG:$Ce^{3+}$ phosphors, irrespective of the crystalline phase of the nano-sized alumina source, was below 1 ms due to the allowed $5d{\rightarrow}4f$ transition of the $Ce^{3+}$ activator.

Effect of Luminescence with Coactivator of $ZnGa_2O_4$:Mn,X phosphor ($ZnGa_2O_4$:Mn,X 형광체의 부활성제에 따른 발광 효과)

  • 박용규;한정인;주성후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.242-247
    • /
    • 1998
  • In this study, we have synthesized $ZnGa_2O_4$:Mn,X powder doped with Mn, MnO, $MnF_2$ and $MnCl_2$, low voltage green emitting phosphor, in vacuum atmosphere. From PL spectra, the intensity of the emission peak, the brightness with coactivator show that $ZnGa_2O_4$:Mn,Cl > $ZnGa_2O_4$:Mn,F > $ZnGa_2O_4$:Mn,O > $ZnGa_2O_4$:Mn. These improvement of the brightness are caused by the increase of the concentration of $Mn^{2+}$ ion. In case of $ZnGa_2O_4$:Mn,Cl and ZnGa$_2$O$_4$:Mn,F, the brightness is enhanced much more, which is owed to the decrease of defect of host material. For $ZnGa_2O_4$:Mn,Cl phosphor fabricated with optimized condition, the decay time becomes short from 30 ms of the $ZnGa_2O_4$:Mn and $ZnGa_2O_4$:Mn,O to 6 ms and the brightness of CL at 1 kV, 1 mA is 60 cd/$m^2$.

  • PDF

The High Density Sintering of Green-emitting β-SiAlON:Eu Ceramic Plate Phosphor (녹색발광 β-SiAlON:Eu 세라믹 플레이트 형광체의 치밀화 소결)

  • Park, Young-Jo;Lee, Sung-Hoon;Jang, Wook-Kyung;Yoon, Chang-Bun;Yoon, Chul-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.503-508
    • /
    • 2010
  • $Eu^{2+}$-doped $\beta$-SiAlONs ($Si_{6-z}Al_zO_zN_{8-z}:Eu_y$) are recognized as promising phosphor materials to build an white LED for lighting application due to its excellent absorption/emission efficiency in the long wave length region. In this research, the fabrication of $\beta$-SiAlON:Eu plate phosphor by sintering was investigated with fixed Eu content(y) and varied composition of the host lattice(z). The addition of the activator $Eu_2O_3$ lead to enhanced densification by forming the transient liquid phase. The refinement of a composition by the calculated lattice parameter indicated that the measured composition of the fabricated specimens is nearly same to that of designed one. The single phase $\beta$-SiAlON:Eu plate with relative density of 96.4% was achieved by addition of 2 wt% CaO, which implies the possibility of full densification by adjusting the processing variables.

(Ba,Sr)$_2SiO_4:Eu^{2+}$ Phosphor Particles by Spray Pyrolysis Process

  • Kang, Hee-Sang;Kang, Yun-Chan;Park, Hee-Dong;Shul, Yong-Gun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.811-814
    • /
    • 2002
  • $(Ba,Sr)_2SiO_4:Eu^{2+}$ phosphor particles with high brightness were prepared by spray pyrolysis. The changes in the photoluminescence intensity and morphology of $(Ba,Sr)_2SiO_4:Eu^{2+}$ were investigated by changing the posttreatment temperature and the concentration of dopant. The prepared $(Ba,Sr)_2SiO_4:Eu^{2+}$ particles has a dense structure, but irregular shape after the posttreatment. When they were excited by the ultraviolet light of 410 nm, a broad emission band with a peak at 508 nm was observed. The photoluminescence intensity of the prepared $(Ba,Sr)_2SiO_4:Eu^{2+}$ particles was enhanced by increasing the posttreatment temperature up to 1300 $^{\circ}C$ and further improved by adding several rear-earth codopants. The $(Ba,Sr)_2SiO_4:Eu^{2+}$ particles prepared by spray pyrolysis had a good excitation spectrum in the wavelength longer than 350 nm. Therefore, it was concluded that the $(Ba,Sr)_2SiO_4:Eu^{2+}$ prepared by spray pyrolysis is a good green-emitting phosphor for LED application.

  • PDF