• Title/Summary/Keyword: Green-Kubo equation

Search Result 5, Processing Time 0.021 seconds

Fluid flow simulation in carbon nano tube using molecular dynamics (탄소나노튜브 내 유체유동의 분자동역학 모사)

  • 우영석;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.347-354
    • /
    • 2003
  • The dynamics of fluid flow through nanomachines is completely different from that of continuum. In this study, molecular dynamics simulations were performed for the flow of helium, neon, argon inside carbon(graphite) nanotubes of several sizes. The fluid was introduced into the nanotube at a given initial velocity according to given temperature. Diffusion coefficients were evaluated by Green-Kubo equation derived from Einstein relationship. The behaviour of the fluid was strongly dependent on the density of fluid and tube diameter, not on the tube length. It was found that the diffusion Coefficients increased With decreasing the density of molecules and increasing the diameter and temperature.

  • PDF

Estimation of diffusion coefficient at the interface between liquid and vapor phases using the equilibrium molecular dynamics simulation (분자 동역학 모사를 이용한 액상과 기상 계면에서의 확산계수의 예측)

  • Kim, Kyeong-Yun;Choi, Young-Ki;Kwon, Oh-Myoung;Park, Seung-Ho;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1584-1589
    • /
    • 2003
  • This work applies the equilibrium molecular dynamics simulation method to study a Lennard-Jones liquid thin film suspended in the vapor and calculates diffusion coefficients by Green-Kubo equation derived from Einstein relationship. As a preliminary test, the diffusion coefficients of the pure argon fluid are calculated by equilibrium molecular dynamics simulation. It is found that the diffusion coefficients increase with decreasing the density and increasing the temperature. When both argon liquid and vapor phases are present, the effects of the system temperature on the diffusion coefficient are investigated. It can be seen that the diffusion coefficient significantly increases with the temperature of the system.

  • PDF

Molecular Dynamics Simulation of Liquid Alkanes. Ⅱ. Dynamic Properties of Normal Alkanes : n- Butane to n- Heptadecane

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.478-484
    • /
    • 1997
  • In a recent paper[Bull. Kor. Chem. Soc. 17, 735 (1996)] we reported results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the dynamic properties of liquid n-alkanes using the same models. The agreement of two self-diffusion coefficients of liquid n-alkanes calculated from the mean square displacements (MSD) via the Einstein equation and the velocity auto-correlation (VAC) functions via the Green-Kubo relation is excellent. The viscosities of n-butane to n-nonane calculated from the stress auto-correlation (SAC) functions and the thermal conductivities of n-pentane to n-decane calculated from the heat-flux auto-correlation (HFAC) functions via the Green-Kubo relations are smaller than the experimental values by approximately a factor of 2 and 4, respectively.

Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers

  • 이승구;이송희
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.897-904
    • /
    • 1999
  • We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic properties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func-tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liquid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re-laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increases. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases.

Molecular Dynamics Simulation Studies of Benzene, Toluene, and p-Xylene in NpT Ensemble: Thermodynamic, Structural, and Dynamic Properties

  • Kim, Ja-Hun;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.447-453
    • /
    • 2002
  • In this paper we have presented the results of thermodynamic, structural, and dynamic properties of model systems for liquid benzene, toluene and p-xylene in an isobaric-isothermal (NpT) ensemble at 283.15, 303.15, 323.15, and 343.15 K using molecular dynamics (MD) simulation. This work is initiated to compensate for our previous canonical (NVT) ensemble MD simulations [Bull. Kor. Chem. Soc. 2001, 23, 441] for the same systems in which the calculated pressures were too low. The calculated pressures in the NpT ensemble MD simulations are close to 1 atm and the volume of each system increases with increasing temperature. The first and second peaks in the center of mass g(r) diminish gradually and the minima increase as usual for the three liquids as the temperature increases. The three peaks of the site-site gC-C(r) at 283.15 K support the perpendicular structure of nearest neighbors in liquid benzene. Two self-diffusion coefficients of liquid benzene via the Einstein equation and via the Green-Kubo relation are in excellent agreement with the experimental measures. The self-diffusion coefficients of liquid toluene and p-xylene are in accord with the trend that the self-diffusion coefficient decreases with increasing number of methyl group. The friction constants calculated from the force auto-correlation (FAC) function with the assumption that the fast random force correlation ends at time which the FAC has the first negative value give a correct qualitative trends: decrease with increase of temperature and increase with the number of methyl group. The friction constants calculated from the FAC's are always less than those obtained from the friction-diffusion relation which reflects that the random FAC decays slower than the total FAC as described by Kubo [Rep. Prog. Phys. 1966, 29, 255].