• 제목/요약/키워드: Green roof soil

검색결과 71건 처리시간 0.02초

한국잔디식재 옥상녹화의 온도저감 및 증발산량 평가 (Assessment of Temperature Reduction and Evapotranspiration of Green Roof Planted with Zoysia japonica)

  • 김세창;이현정;박봉주
    • 한국환경과학회지
    • /
    • 제22권11호
    • /
    • pp.1443-1449
    • /
    • 2013
  • This was an experimental study to evaluate temperature reduction and evapotranspiration of extensive green roof. Three test cells with a dimension of $1.2(W){\times}1.2(D){\times}1.0(H)$ meters were built using 4-inch concrete blocks. Ten-centimeter concrete slab was installed on top of each cell. The first cell was control cell with no green roof installed. The second and third cells were covered with medium-leaf type Zoysiagrass (Zoysia japonica) above a layer of soil. Soil thickness on the second cell was 10cm and that on the third cell was 20cm. Air temperature, relative humidity and solar irradiance were measured using AWS (automatic weather system). Temperature on top surface and ceiling of the control cell and temperature on top surface, below soil and ceiling of green roof cells was measured. Evapotranspiration of the green roof cells were measured using weight changes. Compared with temperature difference on the control cell, temperature difference was greater on green roof cells. Between two green roof cells, the temperature difference was greater on the third cell with a thicker soil layer. Temperature differences below soil and on ceilings of green roof cells were found greater than those of the control cell. Between the green roof cells, there was no difference in the temperature reduction effects below soil and on ceilings based on substrate depth. In summary, green roof was found effective in temperature reduction due to evapotranspiration and shading effect.

기존 노후 건물의 단열 성능에 따른 옥상 녹화 시스템 설치시 에너지 성능 변화 (Energy Saving Effects of Green Roof in Exiting Buildings according to Different Insulation Levels)

  • 안경아;한승원;문현준
    • 한국생활환경학회지
    • /
    • 제21권6호
    • /
    • pp.959-964
    • /
    • 2014
  • Energy performance of building envelope components, including external walls, floors, roofs, windows and doors, is crutial for determining how much energy is required for heating and cooling in a building. Among various building technologies, a green roof system can be a good option for reducing heat gain and loss in new buildings as well as existing buildings for green remodeling. This paper evaluates the performance of green roof systems according to soil depth and Leaf Area Index (LAI) for existing buildings. It also attempts to quantify the energy saving effects on new and existing buildings with different insulation levels. Thermal performance of green roofs is mainly dependent on soil thickness and LAI. Installation of green roofs in deteriorated existing buildings can lead to improvements in roof insulation, due to the soil layer. An increase in soil depth leads to a decrease in heating load, regardless of conditions of vegetation on the green roof. Larger LAI values may reduce cooling loads in the cooling season. Installation of green roof in deteriorated existing buildings showed bigger energy saving effect in comparison to a case in new buildings. A simulation study showed that the installation of green roof systems in deteriorated existing buildings with low insulation levels, due to low thermal performance requirements when constructed, could improve the energy performance of the buildings similar or better to the peformance on new buildings with the most updated insulation standard. Thus, when remodeling a deteriorated building, green roofs could be a good option to meet the most recent energy requirements.

한국옥상녹화기술의 현황과 과제 (Current Status and Issues of Green Roof Technology in Korea)

  • 양병이
    • 한국환경복원기술학회지
    • /
    • 제7권4호
    • /
    • pp.1-7
    • /
    • 2004
  • The purpose of the study is to review current status of green roof technology and to suggest the issues and solutions related with the technological problems of green roof in Korea. The scope of the study is limited to the extensive green roof which requires low maintenance. Technological issues related with green roof include soil, water proofing, water drain, vegetation and maintenance. Several solutions to invigorate green roof technology were suggested as follows; 1)implementation of technical standard for green roof and technology certification system, 2) development of suitable raw materials for green roof, 3) construction guidelines and uniform construction specification, 4) formulation of city ordinance for green roof, and 5) exchange program with foreign green roof organizations.

경량모듈형 옥상녹화시스템의 온도저감 및 열수지 평가 (Assessment of Temperature Reduction and Heat Budget of Extensive Modular Green Roof System)

  • 김세창;박봉주
    • 원예과학기술지
    • /
    • 제31권4호
    • /
    • pp.503-511
    • /
    • 2013
  • 본 연구는 돌나물과 한국잔디를 식재한 경량 모듈형 옥상녹화시스템의 온도저감과 열수지를 평가하였다. 식물생육은 초고와 피복율을 측정하였으며, 2012년 8월 2일부터 3일까지 48시간 동안 콘크리트와 옥상녹화 표면, 토양 속, 모듈 하부의 온도와 순복사, 증발산량을 측정하였다. 기온이 $34.6^{\circ}C$로 가장 높았던 8월 3일 15:00시의 표면온도는 콘크리트가 $57.5^{\circ}C$로 가장 높았으며, 그 다음으로 돌나물 $40.1^{\circ}C$, 한국잔디 $38.3^{\circ}C$의 순으로 옥상녹화 조성 시 큰 폭으로 온도가 저감되는 것으로 나타났다. 토양 속과 모듈 하부도 옥상녹화에 의한 온도저감 효과가 나타났으며, 한국잔디가 돌나물보다 온도저감 효과가 큰 것으로 나타났다. 콘크리트 표면과 비교하여 옥상녹화 최고 온도는 약 2시간 정도 지연되는 것으로 나타났다. 표면의 온도저감에는 식물종, 기온, 토양수분이 영향을 미치고, 모듈 하부의 온도저감에는 식물종, 기온, 토양수분, 표면온도가 유의하게 영향을 미친 것으로 나타났다. 열수지 분석결과, 현열은 콘크리트 표면이 가장 높았으며, 옥상녹화 시 감소하는 경향을 보였으며 잠열은 한국잔디가 돌나물보다 높았다. 따라서 온열환경 개선을 위해서는 한국잔디가 돌나물보다 옥상녹화 적용에 더 효과적임을 알 수 있었다.

경량식생블럭을 이용한 옥상녹화 공법의 토심계획에 관한 실험적연구 (Experimental Study on Planning Soil Depth of Green Roof System using Light-Weight Greening Block)

  • 오재훈;안혜련;김경욱;안영철;문종욱
    • KIEAE Journal
    • /
    • 제13권3호
    • /
    • pp.105-110
    • /
    • 2013
  • Green roof system is classified as intensive greening, extensive greening or mix of intensive-extensive greening. Recently, light-weigh green roof has been performed actively, because buildings have been considered loads, design and maintenance. This study was conducted to design soil depth for light-vegetation block with using bottom-ash. As a result, it was found that growth of plant had no direct effect on soil depth even it was less than 10cm. Soil depth having under 5cm could be integration of plant roots and vegetation blocks. It was also possible to grow organic vegetables through the experiment of planting. According to this experiment, as light-vegetation block with bottom-ash was used for planting, it makes design shallow soil depth. The results will help install green roof system conveniently not only new buildings but also used buildings.

저관리 옥상녹화 모듈에서 토심, 배합비의 차이가 토양의 특성 및 흰줄무늬사사의 생육에 미치는 영향 (Effect on the Growth of Pllioblastus pygmaed and Soil Characteristics as Affected by Difference of Soil Thickness and Soil Mixture Ratio in the Shallow-Extensive Green Roof Module System)

  • 박지혜;주진희;윤용한
    • 한국환경과학회지
    • /
    • 제19권7호
    • /
    • pp.871-877
    • /
    • 2010
  • The objectives of this study were to compare growth of Pllioblastus pygmaed and soil characteristics as affected by difference of soil thickness and mixture ratio in shallow-extensive green roof module system, and to identify the level of soil thickness and mixture as suitable growing condition to achieve the desired plants in green roof. Different soil thickness levels were achieved under 15cm and 25cm of shallow-extensive green roof module system that was made by woody materials for $500{\times}500{\times}300mm$. Soil mixture ratio were three types for perlit: peatmoss: leafmold=6:2:2(v/v/v, $P_6P_2L_2$), perlit: peatmoss: leafmold=5:3:2(v/v/v, $P_5P_3L_2$) and perlit: peatmoss: leafmold=4:4:2(v/v/v, $P_4P_4L_2$). On June 2006, Pllioblastus pygmaed were planted directly in a green roof module system in rows. All treatment were arranged in a randomized complete block design with three replication. The results are summarized below. In term of soil characteristics, Soil acidity and electric conductivity was measured in pH 6.0~6.6 and 0.12dS/m~0.19dS/m, respectively. Organic matter and exchangeable cations desorption fell in the order: $P_4P_4L_2$ > $P_5P_3L_2$ > $P_6P_2L_2$. $P_6P_2L_2$ had higher levels of the total solid phase and liquid phase, and $P_4P_4L_2$ had gas phase for three phases of soil in the 15cm and 25cm soil thickness. Although Pllioblastus pygmaed was possibled soil thickness 15cm, there was a trend towards increased soil thickness with increased leaf length, number of leaves and chlorophyll contents in 25cm. The growth response of Pllioblastus pygmaed had fine and sustain condition in order to $P_6P_2L_2$ = $P_5P_3L_2$ > $P_4P_4L_2$. However, The results of this study suggested that plants grown under $P_4P_4L_2$ appear a higher density ground covering than plants grown under $P_6P_2L_2$. Collectively, our data emphasize that soil thickness for growth of Pllioblastus pygmaed were greater than soil mixture ratio in shallow-extensive green roof module system.

옥상녹화에 따른 공동주택 에너지 저감효과 분석 연구 (An Analysis of Energy Reduction Effects in Housing According to Green Roof)

  • 김지현;손형민;권혁삼;김정곤;이범식
    • 토지주택연구
    • /
    • 제7권4호
    • /
    • pp.299-305
    • /
    • 2016
  • 본 연구는 기후변화 대응을 위한 계획적 수단으로서 옥상녹화에 따른 건축물 에너지 저감효과를 분석하여 옥상녹화 적용확대를 위한 기초자료를 제시하는데 목적이 있다. 대상지는 최근 준공된 공동주택 중 옥상녹화가 적용된 주동과 부대복리시설을 선정하였다. 건축 유형에 따라 경량형(토심 20cm) 및 혼합형(토심 40cm) 옥상녹화를 적용하고, 디자인 빌더(Design Builder)를 활용하여 옥상녹화 적용에 따른 에너지 저감량을 비교 분석하였다. 분석결과, 모든 대상 건축물에서 옥상녹화 적용시 에너지 저감효과가 있으며, 혼합형 옥상녹화가 경량형 옥상녹화에 비해 냉 난방 에너지 저감효과가 더 큰 것으로 나타났다.

저관리 옥상녹화의 식재기반 시스템 차이에 따른 순비기나무의 활용성 평가 (Application Analysis of Vitex rotundifolia by Difference of the Shallow-Extensive Green Roof System)

  • 박준석;주진희;김원태;윤용한
    • 한국환경복원기술학회지
    • /
    • 제13권4호
    • /
    • pp.10-17
    • /
    • 2010
  • The objectives of this study were to compare the growth of Vitex rotundifolia as affected by the difference of soil depth and mixture ratio in a shallow-extensive green roof module system, and to identify the level of soil thickness and mixture ratio as suitable growing condition to achieve the desired plant growth in green roof. Different soil thickness levels were achieved under 7cm, 15cm and 25cm of shallow-extensive green roof module systems made by woody frame of $500{\times}500{\times}300mm$. Soil mixture ratio were eight types for perlite : peatmoss : leafmold = 7 : 1 : 2 (v/v/v, $P_7P_1L_2$), perlite : peatmoss : leafmold = 6 : 2 : 2 (v/v/v, $P_6P_2L_2$), perlite : peatmoss : leafmold = 5 : 3 : 2 (v/v/v, $P_5P_3L_2$), perlite : peatmoss : leafmold = 4 : 4 : 2 (v/v/v, $P_4P_4L_2$), only sand ($S_{10}$), sand : leafmold = 7 : 3 (v/v, $S_7L_3$), sand : leafmold = 5 : 5 (v/v, $S_5L_5$) and only leafmold ($L_{10}$). The growth response of Vitex rotundifolia had fine and sustain condition in $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$., Especially, in case of $P_6P_2L_2$, growth response appeared to be good even in soil thickness 7cm, which showed low survival rates of Vitex rotundifolia in other soil mixtures. Tree height, root diameter, photosynthesis and chlorophyll contents tended to increase with increased soil thickness.

무관수 옥상녹화시스템의 차이에 따른 들잔디 적응성 평가 (Evaluation on Adaptation of Zosia japonica as Effected by Different Green Roof System under Rainfed Conditon)

  • 주진희;김원태;최우영;윤용한
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1137-1142
    • /
    • 2010
  • This study proposes a guideline of a green roof system suitable for the local environment by verifying the growth of Zoysia japonica in a shallow, extensive, green roof system under rainfed condition. The experimental soil substrates into which excellent drought tolerance and creeping Z. japonica was planted were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios(SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$). The plant height, green coverage ratio, fresh weight, dry weight and chlorophyll contents of Z. japonica were investigated. For the soil thickness of 15cm, the plant height of Z. japonica was significantly as affected by the soil mixing ratio and it was shown in the order SL= $P_4P_4L_2$ < $P_7P_1L_2$ = $P_5P_3L_2$ < $P_6P_2L_2$. For the soil thickness of 25cm, the plant height was increased in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was not observed by soil the mixing ratio or soil thickness. However, the green coverage ratio was 86~90% with a good coverage rate overall. The chlorophyll contents of Z. japonica were not significantly affected by the soil mixing ratio in the soil thickness of 15cm, but were higher in the natural soil than in the artificial soil at 25cm soil thickness. The fresh weight and dry weight of Zoysia japonica were heavier in the 25cm thickness than in the 15cm thickness and in the artificial soil mixture than in the natural soil. The result indicated that the growth of Zoysia japonica was more effective in the 25cm soil thickness with artificial soil than in the 15cm soil thickness with natural soil in the green roof system under rainfed condition.

재활용재료를 포함한 옥상녹화용 인공토양의 성능평가 - 토양배합비가 자생식물 생육에 미치는 영향을 중심으로 - (A Study on Green Roofing Applied Artificial Soil Containing Recycled Materials - Focused on the Effects on the Growth of Plants by Difference of Soil Mixture Ratio -)

  • 김경훈;고정현;김용
    • 한국환경복원기술학회지
    • /
    • 제16권5호
    • /
    • pp.119-130
    • /
    • 2013
  • The objective of this study was to analyze an availability of green roof soil based on the bottom ash soil and compost using sludge derived from food factory as comparing and analysing the growth of native plants. Analysing the physical properties and chemical resistance of 12 different type mixing soils which is mainly used in green roof, selected 4 types of soil, experiments were conducted to compare plant growth. The growth status of the plant showed the most superior of the soil 13(control), next soil 9(Pearlite : Bottom Ash : Compost = 20 : 60 : 20) and soil 10(Pearlite : Zeolite : Compost = 60 : 20 : 20) This result showed that native plants grow well in the soil based on the bottom ash and compost using sludge derived from food factory, and this soil type is determined that is available the green roof soil.