• Title/Summary/Keyword: Green emission

Search Result 1,028, Processing Time 0.033 seconds

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

A Study on the GHG Scope 3 Emissions Management Status of the Companies Through CDP Comparative Analysis (CDP 비교 분석을 통한 기업의 GHG Scope 3 배출관리 현황 연구)

  • Sungah Yoon;Hong-Kwan Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.554-561
    • /
    • 2023
  • Purpose: To urge the necessity of disclosure by identifying the relationship between the disclosure status of greenhouse gas emissions from domestic business sites and other indirect emissions to total emissions. Method: The 2021 emission data disclosed in the Carbon Disclosure Project (CDP) was collected by industry and emission category for comparative analysis. Result: The more companies that calculated and disclosed emissions by category within Scope 3, the more active they were in responding to or disclosing evaluation factors other than disclosure of emissions, and those companies were able to obtain higher grades in CDP and ESG evaluations. The number of Scope 3 calculations and disclosures was found to be high. In addition, there was a significant difference in the correlation between the number of Scope 3 disclosures by industry and the share of each scope out of the total in some manufacturing industries. Conclusion: As the number of Scope 3 disclosures, corporate ratings, and total emissions are proportional, it was confirmed that the higher the number of Scope 3 disclosures and GHG emissions, the higher the level of Scope 3 management. Based on Scope 3 emissions calculation and disclosure, effective emissions management and reduction activities are required.

A Growth and Characterization of CsPbBr3 Thin Film Grown by Thermal Chemical Vapor Deposition (열화학기상증착법을 이용한 CsPbBr3 박막 성장 및 특성 연구)

  • Ga Eun Kim;Min Jin Kim;Hyesu Ryu;Sang Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2023
  • In this study, inorganic perovskite films with different compositions were grown by thermal chemical vapor deposition depending on the substrate and their optical properties were compared. Inorganic perovskite crystals were grown on SiO2/Si and c-Al2O3 substrates using CsBr and PbBr2, respectively, under the same growth conditions. Cs4PbBr6-CsPbBr3 crystallites were grown on the SiO2 with polycrystalline structure, while a CsPbBr3 (100) dominant thin film was formed on the c-Al2O3 substrate with single crystal structure. From the photoluminescence measurement, CsPbBr3 showed typical green emission centered at 534 nm with a full width at half maximum (FWHM) of about 91 meV. The Cs4PbBr6-CsPbBr3 mixed structure exhibits blue-shifted emission at 523 nm with a narrow FWHM of 63 meV and a fast decay time of 6.88 ns. These results are expected to be useful for application in photoelectric devices such as displays, solar cells, and light sensors based on inorganic metal perovskites.

An Exploratory Study on the Effect of LCZ Type on Particulate Matter (LCZ 유형이 미세먼지에 미치는 영향에 관한 탐색적 연구)

  • Yeonju Kim;Hansol Mun;Juchul Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.338-352
    • /
    • 2023
  • As of 2019, Korea's fine dust is the most severe among 38 OECD countries, and in the same year, 「the Framework on Disaster and Safety Management」 was revised to define fine dust as a social disaster. Currently, the government is working to achieve its emission reduction goals by preparing a comprehensive fine dust management plan (2022-2023) consisting of a total of five areas, 42 tasks, and 177 detailed tasks. However, it is necessary to come up with measures in consideration of the various spatial characteristics of the city, not just as a source of emission. Therefore, in this study, the shape of the city was classified using the LCZ (Local Climate Zone) classification system into 17 types by building type and land cover type in Busan, and the average annual PM10 and PM2.5 concentration were mapped using the IDW technique. In addition, Fragstats and Moving Window were used to quantify the LCZ classification system. Finally, correlation analysis and regression analysis were conducted to analyze the relationship between the LCZ classification system and PM10 and PM2.5. As a result, it was confirmed that the type of low height of the building and the type of green space with trees had a positive effect on the concentration of PM10 and PM2.5. Therefore, this study is expected to be used as basic data to establish fine dust reduction policies based on efficient spatial planning.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

A Feasibility Study on Thermal Energy Resource in Deep Ocean Water (해양심층수 에너지자원 이용 타당성 분석 연구)

  • Kim, Jeong-Hyop;Kim, Gwang-Tae;Park, Se-Hun;Oh, Wee-Yeong;Kim, Hyeon-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Annual power consumption of our country is positioned in the upper percentile in the world, and because the proportion of fossil power generation is high, which ranks the 10th $CO_2$ emission country. In this regard, government has established and is implementing the National Energy Basic Plan to realize to get out of fossilization in energy supply while focusing on securing the technology for renewable energy as well as its commercialization in order to reduce greenhouse gas. Resource recovery technology for deep seawater thermal energy which is one of renewable energies is newly getting attention domestically as well as in overseas for securing resources and environmental improvement as a core technology for multilateral use of marine resources for low carbon and green growth. Economic feasibility analysis was conducted for the research and development as follows on the use of ocean thermal energy conversion and seawater air conditioning. First, in the case of power generation using deep seawater and warm discharge water from ocean thermal energy conversion plant of 1MW level, it is judged that the economic feasibility is insufficient but the feasibility will be significantly improved if we consider not only power generation but also drinking water and certified emission reduction by developing the power plant to the size for commercialization. Second, the economic feasibility for the use of deep seawater as air conditioning for the power plant of 1,000RT level turned out to be very good. Especially, when we consider certified emission reduction, it will be possible to secure sufficient economic feasibility. When we use it in connection with ocean thermal energy conversion, water conversion and agricultural and fishery use, it is judged that economic ripple effect will be significant and therefore it will be necessary to conduct research and development for early commercialization, distribution and diffusion of deep seawater energy.

A study on the emission characteristics of greenhouse gases according to the vehicle technology, fuel oil type and test mode (차량기술, 연료 유종 및 시험모드 특성에 따른 온실가스의 배출특성 연구)

  • Lee, Jung-Cheon;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.962-973
    • /
    • 2017
  • Concerns about an air pollution are gradually increasing at home and abroad. The automotive and fuel researchers are trying to reduce emissions and greenhouse gases of vehicles through a research on new engine designs and innovative after-treatment systems using clean fuels (eco-alternative fuel) and fuel quality improvements. In this paper, we stduy the emission characteristics of greenhouse gases on seven vehicles using gasoline, diesel, and LPG by legal test mode in domestic and abroad.(Urban mode, Highway mode, rapidly acceleration and deceleration, using air conditioner, low temperature condition) Regardless of fuels, most of the greenhouse gases tend to show the worst results in cold FTP-75 mode. In the case of A vehicles (2.0 MPI) and B vehicles (2.4 GDI) using a gasoline fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. But G vehicles(LPLi) have different emission characteristics from another vehicles. In the case of A vehicles (2.0 w/o DPF) and B vehicles (2.2 with DPF) using a diesel fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. However, the factor of F vehicles are in order of low temperature condition, using air conditioner, rapidly acceleration and deceleration. In conclusion, it will be an effective method to apply different technologies of emission reduction for each fuel.

A Study on the Reinforcement Plan for the Local Government to Respond to the Climate Change through the Survey of Residents Consciousness - Focused on the Gangnam-gu - (주민 의식 조사를 통한 지자체 기후변화 대응 강화 방안에 관한 연구 - 강남구를 중심으로 -)

  • Choi, Bong Seok;Park, Kyung Eun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.83-94
    • /
    • 2014
  • Gangnam-gu, where the survey of residents' consciousness has been made in this study, is the district shows the highest rate of the energy consumption and greenhouse gas emission per unit area except some industrial districts such as Gwangyang, Ulsan, and Pohang. The greenhouse gas emission amount of Gangnam-gu is 4,863,765 $tCO_2$ which accounts for 10 % of the total discharging amount of Seoul, 50,330,356 $tCO_2$, which is ranked the top greenhouse gas emission rate in the commercial category and the 2nd place in the household category. The average recognition rate for the 5 subjects of the global warming phenomenons has indicated to be 83.58%. A survey questioning about the main agent to reduce the greenhouse gas, in all age groups except 20s have replied that it should be done by themselves, the residents of Gangnam-gu. For the question of the role of local government to respond to the climate change, the necessity of establishing infrastructure which is suitable for walking and biking. For the other question about the educational facilities to cope with the climate change, many answered the relevant education should be processed from the middle and high schools. For the practical activities in daily life to respond to the climate change, many replies have shown that the energy and resource conservation has been practiced pretty well broadly, but the ecomileage (former carbon mileage) has not been practiced well. Also, many replies have pointed that there were no benefits or rewards for the people who practiced the eco-mileage in their daily lives, which indicates that a kind of incentive is necessary for the efforts to respond to the climate change from the local government to execute the policy substantially and effectively. This study has the purpose to search the political countermeasures to improve the potentiality to reduce the green house gas emission rate through the residents conscious survey about climate change and the political solution by the local government to improve the certain items which showed the lower awareness rate.

Analysis of Determinants of Carbon Emissions Considering the Electricity Trade Situation of Connected Countries and the Introduction of the Carbon Emission Trading System in Europe (유럽 내 탄소배출권거래제 도입에 따른 연결계통국가들의 전력교역 상황을 고려한 탄소배출량 결정요인분석)

  • Yoon, Kyungsoo;Hong, Won Jun
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.165-204
    • /
    • 2022
  • This study organized data from 2000 to 2014 for 20 grid-connected countries in Europe and analyzed the determinants of carbon emissions through the panel GLS method considering the problem of heteroscedasticity and autocorrelation. At the same time, the effect of introducing ETS was considered by dividing the sample period as of 2005 when the European emission trading system was introduced. Carbon emissions from individual countries were used as dependent variables, and proportion of generation by each source, power self-sufficiency ratio of neighboring countries, power production from resource-holding countries, concentration of power sources, total energy consumption per capita in the industrial sector, tax of electricity, net electricity export per capita, and size of national territory per capita. According to the estimation results, the proportion of nuclear power and renewable energy generation, concentration of power sources, and size of the national territory area per capita had a negative (-) effect on carbon emissions both before and after 2005. On the other hand, the proportion of coal power generation, the power supply and demand rate of neighboring countries, the power production of resource-holding countries, and the total energy consumption per capita in the industrial sector were found to have a positive (+) effect on carbon emissions. In addition, the proportion of gas generation had a negative (-) effect on carbon emissions, and tax of electricity were found to have a positive (+) effect. However, all of these were only significant before 2005. It was found that net electricity export per capita had a negative (-) effect on carbon emissions only after 2005. The results of this study suggest macroscopic strategies to reduce carbon emissions to green growth, suggesting mid- to long-term power mix optimization measures considering the electricity trade market and their role.

A study on the energy management of logistics warehouse through survey (설문조사를 통한 물류창고의 에너지 관리현황에 관한 연구)

  • Lee, Tae-Dong;Kim, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.391-399
    • /
    • 2017
  • Various efforts for reducing greenhouse gas emission due to intensified climate change are being made continuously in all industrial fields, including theimplementation of"green logistics" as countermeasures in the logistics industry. Therefore, energy and greenhouse gas management are necessary for logistics warehouses in the logistics industry. In this study, asurvey on the recognition of logistics center managers and the management elements werecarried out to identify the energy management status of logistics centers. This study was carried out to identify the energy management status of warehouses and the perception of energy managers. The total numberof warehouses and the classification by purpose of use were examinedusing public DB to identify the present status of the warehouses preferentially. Based on the result, asurvey for identifying the present status of energy management and the perception of energy managers targeting 300 warehouses was carried out. Warehouse managers have shown considerable interest in energy management but they experiencedifficulty in this area due to a lack of energy management infrastructure and expertise. In the case of an energy audit, most warehouse managers had no experience in energy auditsbecausethe energy audits werenot mandatory for warehouses. The results of this study can be used as basic data to determineenergy management status and energy management elements for developing IT systems for the energy management of logistics warehouses.