• Title/Summary/Keyword: Green dopant

Search Result 55, Processing Time 0.032 seconds

Multi Quantum Well 구조를 이용한 Red에서 Green으로의 energy transfer mechanism의 이해

  • Kim, Gang-Hun;Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.145-145
    • /
    • 2015
  • 처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.

  • PDF

Investigation of the Green Emission Profile in PHOLED by Gasket Doping

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.226-226
    • /
    • 2016
  • PHOLED devices which have the structure of ITO/HAT-CN(5nm)/NPB(50nm)/EML(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) are fabricated to investigate the green emission profile in EML by using a gasket doping method. CBP and Ir(ppy)3 (2% wt) are co-deposited homogeneously as a background material of EML for green PHOLED, then a 5nm thickness of additionally doped layer by Ir(btp)2 (8% wt) is formed as a profiler of the green emission. The total thickness of the EML is maintained at 30nm while the distance of the profiler from the HTL/EML interface side (x) is changed in 5nm steps from 0nm to 25nm. As shown in Fig. 1, the green (513nm) peak from Ir(ppy)3 is not observed when Ir(btp)2 is also doped homogeneously because Ir(ppy)3 works as an gasket dopant of the Ir(btp)2 :CBP system. Therefore, in this experment, Ir(btp)2 can be used as a profiler of the green emission in CBP:Ir(ppy)3 system. The emission spectra from the PHOLED devices with different x are shown in Fig. 2. In this gasket doping system, stronger red peak means more energy transfer from green to red dopant or higher exciton density by green dopant. To find the green emission profile, the external quantum efficiency (EQE) at 3mA/cm2 for red peaks are calculated. More green light emission at near EML/HBL interface than that of HTL/EML is observed (insert of Fig. 2). This means that the higher exciton density at near EML/HBL interface in homogeneously doped CBP with Ir(ppy)3. As shown in Fig. 3, excitons can be quenched easily to HTL(NPB) because the T1 level of HTL(2.5eV) is relatively lower than that of EML(2.6eV). On the other hand, the T1 level of HBL(2.7eV) is higher than that of EML.

  • PDF

Full Color Reflective Cholesteric Liquid Crystal using Photosensitive Chiral Dopant (감광성 도판트를 이용한 풀컬러 구현 가능 반사형 콜레스테릭 액정)

  • Park, Seo-Kyu;Kim, Jeong-Soo;Cho, Hee-Suck;Kwon, Soon-Bum;Reznikov, Yuri
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.474-480
    • /
    • 2008
  • In order to make full color cholesteric displays, color filter-less R, G, B sub-pixel structured cholesteric LC cells have been studied. To make R, G, B colors, UV induced pitch variant chiral dopant was added to cholesteric LC mixtures. The concentration of the photo-sensitive chiral dopant was adjusted so that the initial state showed blue color and the color was changed from blue to green and red with increase of UV irradiation to the cholesteric cells. To prevent the mixing of R, G, B reflective sub-pixel liquid crystals, separation walls were formed using negative photo resister in boundary area between sub-pixels, Through the optimization of the material concentrations and UV irradiation condition, vivid R, G, B colors were achieved.

The Photoluminescence and Decay time of the Green Phosphor $Zn_2$$SiO_4$:Mn, Mg (Mg와 Mn이 도핑된 $Zn_2$$SiO_4$ : Mn, Mg 녹색 형광체의 빛 발광과 잔광시간 특성)

  • 조봉현;황택성;손기선;박희동;장현주
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1101-1106
    • /
    • 1998
  • Various $Zn_{2-x}SiO_4$:xMn based green phosphors were investigated in association with a co-dopant. The co-dopant incorporated into the phosphors are believed to alter the internal energy state of $Zn_{2-x}SiO_4$ : xMn So that the improvement in their intensity could be expected. Phosphor samples were prepared using the solid state reaction therein raw powders are mixed in the acetone and successively fired at $1300^{\circ}C$ for 4 hour. The fired powders are also heated up to $900^{\circ}C$ for 2 hour in the reduced atmoshpere and thereby giving The fired powders are also heated up to $900^{\circ}C$ for 2 hour in the reduced atmosphere and thereby giving rise to conspicuous enhancement of radiative efficiency. Basically the 0.08 mole ratio of the Mn con-centrations has the maximum value of the intensity so that a co-dopant are added to this Mn con-centration. When the Mg is co-doped with Mn luminescent intensity is proven to be promoted significantly.

  • PDF

Study of White Polymer Electrophosphorescent Light-emitting Diode with Heteroleptic Ir-Complex

  • Lee, Jay-Woo;Kim, Eu-Gene
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.648-650
    • /
    • 2007
  • We demonstrate highly efficient White Polymer Electrophosphorescent Light-emitting Diode using newly developed green and red light emitting heteroleptic iridium complex, Ir-(pq)2tpy, and blue light emitting fluorescent dopant, BczVBi. The best luminous efficiency reached 28cd/A with maximum luminance of 87000cd/m2. The scheme for determining optimum device architecture and dopant concentrations were constructed.

  • PDF

Study of White Light Emission with Three or Two color in Multi Organic Emitting Layers with DCJTB, DPVBi and Coumarin6

  • Yoo, Seok-Jun;Lee, Chan-Jae;Kim, Dong-Won;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1433-1436
    • /
    • 2007
  • Using a blue emitting DPVBi material and red dopant DCJTB, WOLEDs with and without green emitter C6 added in ETL or HTL have been fabricated. The chromaticity color index of WOLEDs without C6 depends strongly on the doping concentration. In addition, manipulating thickness of emitting layer is similar effect such as controlling weight concentration of dopant. While the white color of WOLEDs with C6 added in ETL or HTL depend on position of C6. WOLED of three colors added green dye have been shown turn-on voltage of 3.25V, and EL efficiency 3.05cd/A @9V, $8102\;cd/m^2$, CIE coordinates (0.30, 0.32).

  • PDF

Efficient, Color Stable White Organic Light-Emitting Diode Based on High Energy Level Dopant

  • Park, Young-Seo;Kang, Dong-Min;Park, Jong-Won;Kwon, Soon-Ki;Kang, Jae-Wook;Kim, Yun-Hi;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1120-1123
    • /
    • 2008
  • Efficient, color stable multi-EML WOLED have been fabricated using newly synthesized yellowish green dopant Ir(chpy)3 or Ir(mchpy)3. The devices have high external quantum efficiency of 11.7%, color rendering index of 87, variation of CIE coordinate of (0.02, 0.01) between 10 to 5000 cd/m2, and low roll-off in efficiency with increasing brightness.

  • PDF

Highly efficient, long living white PIN-OLEDs for AM displays

  • Murano, Sven;Vehse, Martin;He, Gufeng;Birnstock, Jan;Hofmann, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.239-244
    • /
    • 2007
  • Highly efficient and stable white PIN OLED structures have been developed with a focus on possible AM display applications. Due to the use of the novel air-stable Novaled n-dopant material NDN26, the mass production compatibility of the PIN approach is improved. With both a conventional n-dopant, NDN1, and a novel air-stable n-dopant, NDN26, similar performance in efficiency and lifetime are reached. Based on highly a stable red fluorescent emitter system, the Novaled PIN approach allows for reaching ultra-long lifetimes of 1,000,000 hours at a brightness of $1,000\;cd/m^2$, both for top and for bottom emission layouts. Furthermore, inverted PIN structures for a possible use in a-Si backplane applications for AM displays are shown. With a phosphorescent green emitter system it could be demonstrated that for bottom and inverted as well as non-inverted top emission, a brightness of $1,000\;cd/m^2$ can be reached at below 3 V. In addition to low operating voltages and long lifetimes, PIN OLEDs also enable for device structures with extremely low operating voltage drifts, a feature of increasing importance for future AM display developments.

  • PDF

Full color reflective cholesteric liquid cystal using photosensitive chiral dopant (감광성 도판트를 이용한 풀컬러 구현 가능 반사형 콜레스테릭 액정)

  • Park, Seo-Kyu;Cho, Hee-Seok;Kwon, Soon-Bum;Kim, Jeong-Soo;Reznikov, Yu.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.394-395
    • /
    • 2007
  • In order to make full color cholesteric displays, color filter-less R, G, B sub-pixel structured cholesteric LC cells have been studied. To make R, G, B colors, UV induced pitch variant chiral dopant was added to cholesteric LC mixtures. The concentration of the photo-sensitive chiral dopant was adjusted so that the initial state showed blue color and the color was changed from blue to green and red with increase of UV irradiation to the cholesteric cells. To prevent the mixing of R, G, B reflective sub-pixel liquid crystals, separation walls were formed using negative photo resister in boundary area between sub-pixels. Through the optimization of the material concentrations and UV irradiation condition, vivid R, G, B colors were achieved.

  • PDF

$CsN_3$ as an air stable and low temperature evaporable novel n doping material for high efficiency and low driving voltage in organic light-emitting diodes

  • Lee, Jun-Yeob;Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Lee, Tae-Woo;Noh, Tae-Yong;Yang, Haa-Jin;Kang, Sung-Kee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1319-1322
    • /
    • 2008
  • $CsN_3$ was developed as a novel n doping material with air stability and low deposition temperature. Evaporation temperature of $CsN_3$ was similar to that of common hole injection material and it worked well as a n dopant in electron transport layer. Driving voltage was lowered and high power efficiency was obtained in green phosphorescent devices by using $CsN_3$ as a dopant in electron transport layer. It could also be used as a charge generation layer in combination with $MoO_3$. In addition, n doping mechanism study revealed that $CsN_3$ is decomposed into Cs and $N_2$ during evaporation. This is the first work reporting air stable and low temperature evaporable n dopant in organic light-emitting diodes.

  • PDF