• Title/Summary/Keyword: Green Tea Polyphenols

Search Result 59, Processing Time 0.023 seconds

Effects of Green Tea Residue Treatment in Eco-Friendly Medium on Growth and Catechin Content of Pleurotus eryngii (친환경 버섯배지에 녹차 잔류물의 처리가 새송이버섯의 생장 및 Catechin류 함량에 미치는 영향)

  • Chon, Sang-Uk;Kim, Young-Min;Yun, Dae-Ryung
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.38-42
    • /
    • 2007
  • The present study was conducted to investigate the translocation of polyphenols, especially catechin derivatives, from mushroom medium mixed with green tea residues into fruiting body of Pleurotus eryngii. Pleurotus eryngii was grown on the media incorporated by mixing or surface-treated with dry materials including leaf petioles and young stems or leaves of green tea. The dry materials treated in medium did not affect plant height and fresh weight of Pleurotus eryngii body. From the samples of Pleurotus eryngii, the eight main catechin derivatives (-)-gallocatechin(GC), (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG), and (-)-catechin gallate (EGCG), and caffeine were analyzed quantitatively by HPLC. The results showed that EGC in Pleurotus eryngii was 45% more detected, when incorporated with the dry materials, than untreated control. Especially, content of EGCG was increased in surface-treated Pleurotus eryngii up to 3.2 ppm, while it was not detected or reduced in control and other treatments. Caffeine content was greatly increased regardless of treatment method, compared with control (0.1ppm), showing 44 fold-amount in Pleurotus eryngii at early growth stage when incorporated with the dry materials into medium. The results indicates that functional catechin derivatives of green tea would be partly translocated into Pleurotus eryngii throught incorporation and surface treatment with residues of green tea plants.

Retention of Biological Activities of the Cosmetics Manufactured with Green Tea Polyphenol and Possible Application of Irradiation Technology

  • Park, Tae-Soon;Lee, Jin-Young;Jo, Cheo-Run;An, Bong-Jeun
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • Ionizing radiation can be used to improve the color of green tea extract to brighter. As a result, the irradiated green tea extract can be applied easier and broader in food or cosmetic industry. To confirm the retention of the biological activities of the cosmetic products added with green tea polyphenols (PPs), the real cosmetic products including a skin lotion (PS) and an essence (PE) cream were manufactured. Irradiation also applied to the manufactured cosmetic products to see their improvement of color and changes of biological activity. The PP showed 72% of electron donating ability (EDA) at a 5 ppm concentration and the PS and PE containing 2% PP showed higher than 60%, which was similar inhibition activity to vitamin C. The inhibition of superoxide dismutase (SOD)-like activity of PP, PS, and PE were higher than 55% at a 500 ppm concentration and the inhibition of xanthine oxidase (XOase) were also higher than 65% at a 200 ppm concentration. The measurement of lipid oxidation by addition of $Cu^{2+}$ and $Fe^{2+}$ as prooxidants showed that PP and PS had higher metal chelating ability for $Fe^{2+}$ than that of PE and the ability increased by increase of polyphenol concentration isolated from green tea. The $Cu^{2+}$ chelating ability of PP and PS showed higher than 90% at a 200 ppm concentration. Therefore, it is concluded that addition of PP in manufacturing PS and PE retains its biological activities including EDA, inhibition of XOase and SOD-like activity, and metal chelating ability in the manufactured cosmetic products. In addition, irradiation of PS and PE improved color of the products containing PP brighter without any adverse changes in biological activity of the products.

Protective Effects of Natural Phytochemicals on the Lipid Peroxides Induced Apoptosis in the Human Endothelial ECV 304 Cells

  • Kim, Ae-Jung;Kim, Mae-Wha;Kang, Young-Hee;Lee, Myoung-Sook
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.436-441
    • /
    • 2009
  • The final bio-metabolites of lipid peroxidation (LPO) such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) have been suggested to mediate the oxidative stress-linked pathological incidences. Natural phytochemicals such as polyphenolic compounds in green tea have been known in preventing the LPO induced cellular growth inhibition and apoptosis. We investigated that green tea ethanol extracts (GTE) inhibit LPO-induced apoptosis in ECV 304 cells. GTE had time- or dose-dependent anti-apoptotic effects as evidenced by changes in cell morphology, MTT assay, DNA fragmentation, LPO production, and the Western blotting for apoptotic expression. In the 4-HNE-induced apoptosis model, GTE $10-20{\mu}g/mL$ decreased cell death through decreasing LPO production. GTE protected 4-HNE induced apoptosis, as evidence with down regulation of mitochondrial signaling such as cytochrome C and caspase-3 activity. GTE increased bcl2, survival signaling protein, compared to 4-HNE alone within 6 hr incubation. Since polyphenols in GTE are effective antioxidants in endothelial ECV 304 cells, we suggested that natural polyphenols might be anti-atherosclerotic.

Hypocholesterolemic Effects of Green Tea in Cholesterol-Fed Rats (고 콜레스테롤 식이 투여 흰쥐에 있어서 녹차의 콜레스테롤 저하 효과)

  • 진현화;양정례;정종화;김양하
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.47-51
    • /
    • 2004
  • Green tea, which is high in polyphenols, is thought to have hypocholesterolemic effects. The present study was performed to further elucidate the hypocholesterolemic actions of green tea, specially the catechin and (-)-epigallocatechin gallate (EGCG) for their effects on the diet-induced hypercholesterolemia in rats. Male Sprague-Dawley rats were fed with green tea-free diet (control), diets containing 4% green tea powder (GTP), 1.0% green tea catechin (catechin) or 0.5% epigallocatechin gallate (EGCG) for 7 wks. All diets that were provided green tea contained approximately 0.5% EGCG Hypercholesterolemia was induced by adding 1% cholesterol and 0.5% cholic acid to all diets. There were no differences in food intake among groups. The green tea treatments showed significant improvement in the serum levels of total cholesterol, LDL-cholesterol, triacylglycerides and atherogenic index in the following order; EGCG>Catechin>GTP (p<0.05). The serum HDL-cholesterol level was highest in the EGCG-treated group. The catechin or EGCG diet up-regulated by 5 times the enzyme activity of hepatic cholesterol 7$\alpha$ -hydroxylase (CYP7Al) compared to control diet (p<0.05). Hepatic CYP7Al mRNA level paralleled tile increases in the CYP7Al activity. These results suggest that the EGCG in the green tea may account for the hypocholesterolemic effect by the induction of CYP7Al gene expression.

Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats

  • Jung, Moon Hee;Seong, Pil Nam;Kim, Myung Hwan;Myong, Na-Hye;Chang, Moon-Jeong
    • Nutrition Research and Practice
    • /
    • v.7 no.5
    • /
    • pp.366-372
    • /
    • 2013
  • The application of polyphenols has attracted great interest in the field of functional foods and nutraceuticals due to their potential health benefits in humans. However, the effectiveness of polyphenols depends on their bioactivity and bioavailability. In the present study, the bioactive component from green tea extract (GTE) was administrated orally (50 mg/kg body weight/day) as free or in a microencapsulated form with maltodextrin in rats fed a high fructose diet. High fructose diet induced features of metabolic syndrome including hypertriglyceridemia, hyperuricemia, increased serum total cholesterol, and retroperitoneal obesity. In addition, myocardial fibrosis was increased. In rats receiving high fructose diet, the lowering of blood triglycerides, total cholesterol, non esterified fatty acid (NEFA) and uric acid, as well as the reduction in final body weight and retroperitoneal fat weight associated with the administration of GTE, led to a reversal of the features of metabolic syndrome (P < 0.05). In particular, the administration of microencapsulated GTE decreased myocardial fibrosis and increased liver catalase activity consistent with a further alleviation of serum NEFA, and hyperuricemia compared to administration of GTE. Taken together, our results suggest that microencapsulation of the bioactive components of GTE might have a protective effect on cardiovasucular system by attenuating the adverse features of myocardial fibrosis, decreasing uric acid levels and increasing hepatic catalase activity effectively by protecting their bioactivities.

Physiological and Pharmacological Activites of Nutraceutical Tea by Leaves and Flowers of Domestic Camellia(Camellia japonica)

  • Lee, Sook-Young;Cha, Young-Ju;Lee, Jang-Won;Hwang, Eun-Ju;Kwon, Su-Jung;Cho, Su-In
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.48-49
    • /
    • 2003
  • This project was conducted to development several camellia tea mixed herb teas having any physiological effects. Leaves of tea tree contain many compounds, such as polysaccharides, volatile oils, vitamins, minerals, purines, alkaloids(eg. caffeine) and polyphenols(catechins and flavonoids). Although all three tea types(green, oolonr and black) have antibacterial and free radical capturing(antioxidizing) activities, the efficacy decreases substantially the darker the variety of tea is. This is due to lower contents of anti-oxidizing polyphenols remaining in the leaves. Unlike tea tree(Camellia sinensis), the biochemical features and effects of camellia(Camellia japonica) are not well known. Fresh mature leaf of sasanqua camellia(C. sasanqua), roasted young leaf tea(C. japonica) and fresh mature leaf and bark of camellia had high antibacterial activity against P. vulgaris and B. subtilis. In antifungal activity bioassay, young leaf roasted teas of camellia and sasanqua camellia had high activity against C. albicans and T. beigelil. Plant extracts from Camelia japonica had higher inhibitory activity against fungi than against bacteria. In cytotoxic effect against human acute myelogenous leukaemia cell extracts including fresh leaf(200$\mu\textrm{g}$/m1), bark(230$\mu\textrm{g}$/ml) and flower tea (320$\mu\textrm{g}$/m1)inhibited growth of AML cells.(중략)

  • PDF

Growth Inhibitory Effect of Irradiated Green Tea Polyphenol Addition in Cosmetic Composition (녹차 폴리페놀을 첨가한 화장품의 암 세포증식억제 효과)

  • Park, Tae-Soon;Lee, Jin-Young;Park, Gun-Hye;Hyun, Sok-Jun;Lee, Jin-Tae;Cho, Young-Je;Kim, Young-Sun;An, Bong-Jeun
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.217-223
    • /
    • 2007
  • Cosmetic products including toner and essence were manufactured to evaluate the effect of green tea polyphenols. In addition, irradiation was applied to remove an undesirable color of green tea polyphenol(GTP), which may cause a problem in marketing. The growth inhibition rates of GTP, PT, and PE on all cell lines were shown to be over 80% at 500 ppm concentration. Especially the growth inhibition rates of GTP, PT, and PE on human melanoma(G361) cells were shown to be over 80% at only 100 ppm concentration. Results indicate that the addition of irradiated green tea polyphenol may be effective in the manufacturing of functional cosmetics including toner and essence with various anti-cancer activities.

Prevention of Olanzapine-induced Toxicities of Weight Gain and Inflammatory Reactions by Coadministration with Green Tea or its Major Component Phenolic Epigallocatechin 3-Gallate in Mouse

  • Kim, Chul-Eung;Mo, Ji-Won;Kim, Jin;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.127-131
    • /
    • 2007
  • Chronic treatment with olanzapine (OLZ), an atypical antipsychotic drug, is associated with the adverse effects of weight gain, hyperglycemia and/or hypertriglyceridemia. Green tea or epigallocatechin gallate (EGCG), one of the most abundant green tea polyphenols, significantly reduces or prevents an increase in glucose levels, lipid markers and/or body weight. We hypothesized that combined treatment with OLZ and green tea extract (GTE) or EGCG may prevent body weight gain and increase of the lipid markers. ICR male mice weighing an average of 30.51 g (n=32) at the beginning of the experiment were used. OLZ, OLZ+GTE and OLZ+EGCG were administered for 27 d in the drinking water, and then the levels of fasting glucose, nitric oxide (NO), and a typical lipid marker triglyceride (TG) were determined in plasma. The body weight and food intake were also compared. The chronic treatment of OLZ increased the average body weight compared with that of controls. In the presence of GTE or EGCG, the OLZ-induced increase in body weight was significantly prevented. Furthermore, in the OLZ group, the plasma levels of glucose, NO and TG were significantly increased, whereas GTE or EGCG prevented these increases. These results implicate that OLZ may induce systematic inflammatory reaction, and suggest that GTE or EGCG can protect against OLZinduced weight gain, hyperglycemia and hypertriglyceridemia.

A New Approach to Managing Oral Manifestations of Sjogren's Syndrome and Skin Manifestations of Lupus

  • Hsu, Stephen;Dickinson, Douglas
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.229-239
    • /
    • 2006
  • Sj$\"{o}$gren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to xerostomia, and the lacrimal glands, resulting in xerophthalmia. Secondary SS is associated with other autoimmune disorders such as systemic rheumatic diseases and systemic lupus erythematosis (SLE), which can affect multiple organs, including the epidermis. Recent studies have demonstrated that green tea polyphenols (GTPs) possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Epidemiological evidence has indicated that, in comparison to the United States, the incidence of SS, clinical xerostomia and lupus is considerably lower in China and Japan, the two leading green tea-consuming countries. Thus, GTPs might be responsible, in part, for geographical differences in the incidence of xerostomia by reducing the initiation or severity of SS and lupus. Consistent with this, molecular, cellular and animal studies indicate that GTPs could provide protective effects against autoimmune reactions in salivary glands and skin. Therefore, salivary tissues and epidermal keratinocytes could be primary targets for novel therapies using GTPs. This review article evaluates the currently available research data on GTPs, focusing on their potential application in the treatment of the oral manifestations of SS and skin manifestations of SLE.

Role of tea catechins in prevention of aging and age-related disorders

  • Khanna, Arjun;Maurya, Pawan Kumar
    • CELLMED
    • /
    • v.2 no.1
    • /
    • pp.2.1-2.11
    • /
    • 2012
  • Tea polyphenols especially catechins have long been studied for their antioxidant and radical scavenging properties. Scientists throughout the world have investigated the usefulness of the regular green tea consumption in several disease conditions. In-vitro and in-vivo experiments on catechins especially epigallocatechingallate have revealed a significant role in many ways. Reactive oxygen species have been increasingly implicated in the pathogenesis of many diseases and important biological processes. Toxic effects of these oxidants, commonly referred to as oxidative stress, can cause cellular damage by oxidizing nucleic acids, proteins, and membrane lipids. Oxidative stress has been related to aging and age related disorders. It is found that in a wide variety of pathological processes, including cancer, atherosclerosis, neurological degeneration, Alzheimer's disease, ageing and autoimmune disorders, oxidative stress has its implications. Catechins have been reported to be useful in combating aging and age related disorders like cancer, cardiovascular disorders and neurodegenerative diseases. In this mini review we will discuss such studies done across the globe.