• Title/Summary/Keyword: Green Practices

Search Result 212, Processing Time 0.027 seconds

High-Rise Urban Form and Environmental Performance - An Overview on Integrated Approaches to Urban Design for a Sustainable High-Rise Urban Future

  • Yang, Feng
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.87-94
    • /
    • 2016
  • High-rise as a building typology is gaining popularity in Asian mega-cities, due to its advantages in increasing volumetric density with limited land resources. Numerous factors contribute to the formation of high-rise urban form, from economical and institutional, environmental to socio-political. Environmental concerns over the impact of rapid urbanization in developing economies demand new thought on the link between urban environment and urban form. Outdoor and indoor climate, pedestrian comfort, and building energy consumption are all related to and impacted by urban form and building morphology. There are many studies and practices on designing individual "green" high-rise buildings, but far fewer studies on designing high-rise building clusters from the perspective of environmental performance optimization.. This paper focuses on the environmental perspective, and its correlation with the evolution of the high-rise urban form. Previous studies on urban morphology in terms of environmental and energy performance are reviewed. Studies on "parameterizing" urban morphology to estimate its environmental performance are reviewed, and the possible urban design implications of the study are demonstrated in by the author, by way of a microclimate map of the iconic Shanghai Xiao Lujiazui CBD. The study formulates the best-practice design guidelines for creating walkable and comfortable outdoor space in a high-rise urban setting, including proper sizing of street blocks and building footprint, provision of shading, and facilitating urban ventilation.

Occurrence of Major Insect Pests in Machine Transplanted and Direct Seeded Rice Paddy Field (벼 기계이앙 및 직파재배에 따른 수도 주요해충의 발생.피해)

  • 이승찬;마경철
    • Korean journal of applied entomology
    • /
    • v.36 no.2
    • /
    • pp.141-144
    • /
    • 1997
  • Studies were conducted to investigate the incidense of insect pests in transplanted and direct seeded paddy fields in southern region of Korea. Population dencities of the rice green leafhopper (RGLH: Nephotettix cincticeps Uhler) and rice leaffolder (RLF: Cnaphalocroch medinalh Guenee) were higher in machine transplanted than in direct seeded, but the brown planthopper (BPH: Nilaparvata lugens Stal) and smaller brown planthopper (SBPH: Laodelphax striatellus Fallen) were abundant in direct seeded. However, no significant difference was found between machine transplanted and direct seeded fields in the incidense of rice stem borer (RSB: Chilo suppressalis Walker), whiteback planthopper (WBPH: Sogatella furcifera Horvath), and rice stem magot (RSM: C'hlorops oryzae Matsumura). Occurrence of rice key pests were affected more by transplanting time than other cultural practices. Later transplanting induced higher populations of BPH, WBPH, SBPH, RGLH. However, RSB and RLF caused higher damage in earlier transplanted paddy field.

  • PDF

Life cycle greenhouse-gas emissions from urban area with low impact development (LID)

  • Kim, Dongwook;Park, Taehyung;Hyun, Kyounghak;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • In this study, a comprehensive model developed to estimate greenhouse gas (GHG) emissions from urban area with low impact development (LID) and its integrated management practices (IMPs). The model was applied to the actual urban area in Asan Tangjeong district (ATD) as a case study. A rainwater tank (1200 ton) among various LID IMPs generated the highest amount of GHG emissions ($3.77{\times}10^5kgCO_2eq$) and led to the utmost reducing effect ($1.49{\times}10^3kgCO_2eq/year$). In the urban area with LID IMPs, annually $1.95{\times}104kgCO_2eq$ of avoided GHG emissions were generated by a reducing effect (e.g., tap water substitution and vegetation $CO_2$ absorption) for a payback period of 162 years. A sensitivity analysis was carried out to quantitatively evaluate the significance of the factors on the overall GHG emissions in ATD, and suggested to plant alternative vegetation on LID IMPs.

Biological Turf Restoration

  • Wilson, Carol W.;Kim, Hyung-Ki
    • Asian Journal of Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.31-34
    • /
    • 1993
  • There is a growing concern in the United Stares over the environmental and human health implications associated with heavy use of water, pesticides, and inorganic ferilizers in maintaining picture perfect golf courses. There is also a growing awareness that a beautiful course is not necessarily a healthy course. The following discussion reviews the interrelationship of turfgrass and the soil that supports it and provides basic information on currently available alternatives to turf management practices that feature intensive application of inorganic fertilizers. water and pesticides. Soil is a dynamic natural environment in which microorganisms play an important role. Soil contains a large mass of microorganisms which produce thousands of enzymes that can catalyze the transformation and degradation of many organic molecules. (In top soil under optimum conditions may contain 10 billion cells per gram of soil.). Turfgrass and the soil which supports it are interdependent. The natural organic cycle as applied to turf and soil begins with healthy vigorous grass plants storing up the sun's energy in green plant tissues as chemical energy. Animals obtain energy by eating plants and when plants and animals die, their wastes are returned to the soil and provide "food" for soil microorganisms. In the next step of the organic cycle soil microorganisms break down complex plant tissues into more basic forms and make the nutrients available to grass roots. Finally, growing plants extract the available nutrients from the soil. By free operation of this organic cycle, natural grasslands have some of the most fertile soils on earths.

  • PDF

A High Yield and Processing Potato Cultivar 'Taedong Valley'

  • Dhital, Shambhu P.;Lian, Yu J.;Hwang, Won N.;Lim, Hak T.
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.207-211
    • /
    • 2010
  • 'Taedong Valley' is a high yielding and processing potato cultivar, which is a clonal selection resulting from a cross between 'W870' and 'A88431-1'. It is a medium maturating cultivar with medium plant height and light green foliage. 'Taedong Valley' has profuse flowering habit and light purple flowers. Tubers are smooth, round, and with yellow skin, light yellow flesh, medium eye depth. Tubers have medium dormancy and good keeping quality. 'Taedong Valley' has stable yield under wide range of climatic conditions. It is resistant to common scab and potato virus Y, but moderately susceptible to late blight. It is also resistant to most of the disorders, particularly dehiscence, hollow heart and internal brown spots. This cultivar has high level of tuber uniformity and capable of yielding 43.6 t/ha which is about 9.0% higher than the control potato cultivar 'Atlantic' under optimum agronomical practices.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

FedEx Earth Smart: Practices of Environment-Friendly Management

  • Jung, Young-Su
    • The Journal of Economics, Marketing and Management
    • /
    • v.3 no.4
    • /
    • pp.21-27
    • /
    • 2015
  • With the recent increasing interest in sustainability management, the latest environmental report tends to be substituted by the expanded sustainability management report. In this work, I would like to introduce the management pattern of a global enterprise that values environmental soundness (environmental friendly) and implements eco-friendly measures. The enterprise chosen in this study is FedEx. In this article, FedEx case is presented how companies can adopt environmental friendly management in their businesses. FedEx has maintained an eco-friendly management since the introduction of the company's eco-friendly transport trucks in 2003, following its development in 2000. In 2005, it installed a solar power plant that can supply up to 80% of the electricity consumed by Oakland Logistics Center in California, USA. FedEx has published the "Global Enterprise Citizenship Report," which contains its business developments in 2009. FedEx has worked hard to minimize the influence caused by packaging of goods to the environment and appealed to customers to use recycled products as much as they can. FedEx also encourages customers to use packaging materials efficiently. A considerable amount of energy has been expended in the eco-friendly programs of FedEx. Although thousands of FedEx vehicles and aircraft operate daily with using large amounts of electricity and fuel, FedEx focuses on energy savings and global environment protection.

Herbicidal Efficacy of Bispyribac-sodium Combined with Other Herbicides for Annual Bluegrass(Poa annua L.) Suppression (새포아풀(Poa annua L.) 방제를 위한 Bispyribac-sodium과 타약제와의 혼합 상호작용)

  • Park, Nam-Il;Lee, In-Yong;Park, Jae-Eup;Kim, Ho-Jun;Chun, Jae-Chul;Ogasawara, Masaru
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • Bispyribac-sodium is a new-type herbicide that prevents the occurrence of annual bluegrass by the suppression of anthesis and inflorescence emergence on the bent green. The greenhouse experiment was conducted to investigate interaction effect of the bispyribac-sodium with 21 soil- and foliar-applied herbicides in regards of herbicidal activity of annual bluegrass. The remarkable synergism was not found on the combination of bispyribac-sodium with benfluralin, pendimethalin, oryzalin, siduron, chlorphtalim, isoxaben, bifenox, tenylchlor, indanofan, bentazone, imazosulfuron, imazaquin, halosulfuron-methyl and limsulfuron. However, mixture of bispyribac-sodium with mecoprop, triclopyr, metsulfuron-methyl, cyclosulfamuron, pyrazosulfuron-ethyl and pyributicarb produced greater synergism of herbicidal activity when compared with unmixed, single application. Phytotoxicity was low on bentgrass green and fast recovery was observed. In future, it would be strongly necessary to do research to Investigate the effect of bispyribac-sodium combination with other herbicides under various environment and management practices on-site bentgrass green.

Effect of Harvest Maturity, Wilting and Inoculant on the DM Losses and Morphological Changes of Round Baled Rye Silage (수확시 숙기, 예건 및 유산균첨가제 처리가 호밀 원형곤포 사일리지의 건물 손실률 및 형태변화에 미치는 영향)

  • Kim, Jong Geun;Park, Hyung Soo;Lee, Sang Hoon;Kim, Meing Joong;Kim, Jong Kwan;Lim, Young Chul;Chung, Eui Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.283-289
    • /
    • 2015
  • Three experiments were carried out to determine the effect of harvest maturity and management practices on the dry matter losses and morphological changes of round baled rye silage. Rye was harvested at three growing stages (boot, heading and flowering stage) in three different conditions i) with wilting (unwilted, short wilting and long wilting), ii) with inoculant treatment (untreated, inoculant A and inoculant B) and iii) with three different wrap colors (white, black and green). The morphological changes in round bale silage after 2 months was heavy in the early harvest and unwilted silage. However, harvesting after the heading stage did not change the shape, significantly. Inoculant treatment reduced the morphological changes and dry matter (DM) losses of round baled rye silage. DM loss was decreased with a delayed harvesting date and was significantly reduced by the inoculant. Dramatic changes in the shape were observed in all treatment at boot stage. Inoculant treatment resulted in more severe changes in the boot stage compared to untreated silage. Black color wrapping had the greatest impact among the wrap colors and there were no significant difference in the wrap colors. Harvest maturity and wilting periods was highly correlated (p<0.01) with morphological change. Result of these studies indicated that dry matter content is the most important factor that affects the morphological change in round bale silage.

A Study on Evaluation of Target Region for the Agricultural Non-point Sources Management (새만금 유역 농업비점오염원 관리를 위한 우선지구 선정연구)

  • Jang, Nam-Jung;Kim, Bo-Guk;Im, Seoung-Hyun;Kim, Tae-Kyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Measures against non-point sources pollution in Saemangeum watershed should be established to control water quality of Saemangeum lake, because non-point sources pollution discharge portions of BOD (Biological Oxygen Demand) and TP (Total Phosphorous) in the watershed were 68.4 and 61.4%, respectively. In this study, target regions for the non-point sources pollution control were selected to apply BMP (Best Management Practices) for the agricultural area of Saemanguem watershed in terms of TP that caused eutrophication at the lake. Target regions were selected by the NPSI (Non-point source index) that was calculated by the total 12 indexes at the steps of non-point source production, emission and outflow. Weights of the indexes were determined by the watershed management experts oriented AHP (Analytic Hierarchy Process) analysis. The target region was selected at the unit of Korean basic administrative district 'Dong/Li'. At the results of NPSI calculations through the GIS (Geographical Information System) tools, two sets of 5 regions were selected in the Man-kyung River and Dong-gin River. The main reason for the selected target regions was livestock activity in the district. The results of this study can be useful for implementing the reduction projects of agricultural non-point sources pollution to control water quality in Saemangeum lake.