• Title/Summary/Keyword: Green Laser

Search Result 200, Processing Time 0.028 seconds

Frequency-Modulated Pulse-Amplification Method for Reducing Pulse Shape Distortion

  • Jeong, Jihoon;Cho, Seryeyohan;Hwang, Seungjin;Yu, Tae Jun
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1637-1643
    • /
    • 2018
  • To reduce the laser pulse shape distortion accompanying the amplification process and achieve an intended output pulse shape in the Nd:YAG amplifier chain, we propose a frequency-modulated pulse-amplification method. Assuming carrier-frequency-modulated seed pulses, we numerically simulate the pulse amplification in an Nd:YAG amplifier chain where severe distortion occurs. For the calculation, we develop a modified Frantz-Nodvik equation, which enables two inputs with different carrier frequencies. The simulation results indicate that the temporal contrast of the seed pulse needed to obtain a flat output pulse shape is reduced by 16 - 25 dB when frequency modulation is applied.

All-fiber RGB Laser Light Source of Head-up Display System for Automobile Application

  • Lee, Jonggwan;Kim, Kyungwon;Son, Seong-Jin;Kim, Bok Hyeon;Yu, Nan Ei
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 2020
  • We developed an all-fiber RGB laser light source module for application in an automobile head-up display. It is based on laser diodes and an optical fiber combiner that substantially enhances the flexibility of configuration and stability against harsh working conditions for automobiles. We coupled 13 laser diodes with optical fibers and merged them into a single output with a beam combiner device. Red (R), green (G), and blue (B) laser sources were employed to produce primary colors that were mixed into a white light output. An optical output power of approximately 1.5 W was achieved, and the color balance of the output lights was assessed based on the CIE 1931 color space. The optical output power was shown to be stable for over 160 h within an optical fluctuation of less than 0.27%.

Experimental Study for Removing Artificial Patinas of Bronze Sculpture by Nd:YAG Laser Cleaning System (청동 조형물의 인공 파티나 제거를 위한 Nd:YAG 레이저 적용 실험 연구)

  • Park, Chang-Su;Cho, Nam-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.197-207
    • /
    • 2013
  • In the midst of increasing importance of modern cultural assets, especially, most modern bronze objects are exposed to outdoor environment, and as the objects are corroded steadily due to environmental factors the objects lost their original colors on the surface. We performed artificial patinas on the bronze sample per each color of red, black and green and checked cuprite and tenorite which are detected from actual bronze corrosion by analyzing the components. In addition, we applied the existing corrosion removal methods of grinder and sand blaster on a similar sample of bronze mirror per injection pressure and performed comparative analysis on the result with Nd:YAG laser. As a result of Nd:YAG laser cleaning artificial patina from bronze samples, all of the patinas were removed by laser wavelength 1064 nm better than 532 nm. Upon applying to a similar sample of bronze mirror, the artificial patina could be selectively removed from substrates without surface damage when Nd:YAG laser was conducted other than the existing removal method, and so it showed the possibility of application.

Study on Implant Cleaning Effect of Lasers of Different Wavelengths (파장이 다른 레이저의 임플란트 세정 효과에 관한 연구)

  • Park, Eun Kyeong;Yang, Yun Seok;Lee, Ka Ram;Yoo, Young Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.643-651
    • /
    • 2013
  • This study applied a laser cleaning method (dry cleaning) that is used for cleaning semiconductor elements to dental implant cleaning. The lasers used in this study were pulsed fiber lasers with wavelengths of 1,064 and 532 nm. The peak output, energy per pulse, energy density per pulse, time of pulse experiment, and number of pulse experiments served as process variables for this study, and the variables were changed for each experiment. As a result, a laser with a wavelength of 532 nm showed much higher cleaning efficiency than its 1,064 nm counterpart. As the wavelength range decreased, the quantized energy increased and the reflection rate of the titanium used for the implant decreased; consequently, the energy absorption rate increased. Therefore, it is proposed that the energy density by wavelength has a greater influence on cleaning than does the output size.

Properties of Y3Al5O12:Ce3+,Pr3+ Single Crystal for White Laser Lightings (백색 레이저 조명용 Y3Al5O12:Ce3+,Pr3+ 단결정 특성)

  • Kang, Taewook;Lim, Seokgyu;Kim, Jongsu;Lee, Bong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.37-41
    • /
    • 2018
  • $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was prepared by floating zone method. single crystal was confirmed to have a Ia-3d (230) space group of cubic structure and showed regular morphology. The optical properties, single crystal exhibited a emission band from green, yellow wide wavelength and 610nm, 640nm red wavelength vicinity. The luminance maintenance rate was decreased by phonon with increasing temperature, but high luminance is maintained more than powder phosphor. In addition, $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was applied to a high power blue laser diode, we implemented high power white laser lightings. and it was confirmed that thermal properties over time, due to the effective heat transfer of complete crystal structure. We confirmed that excellent radiant heat properties than powder phosphor was applied to a high power white laser diode.

Effect of thermal laser pulse in transversely isotropic Magneto-thermoelastic solid due to Time-Harmonic sources

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.343-358
    • /
    • 2020
  • The present research deals with the time-harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation due to inclined load and laser pulse. Generalized theory of thermoelasticity has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with uniform angular velocity and subjected to thermally insulated and isothermal boundaries. The inclined load is supposed to be a linear combination of a normal load and a tangential load. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components, and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of angle of inclination of normal and tangential load for Green Lindsay Model and time-harmonic source for Lord Shulman model is depicted graphically on the resulting quantities.

Crystal Growth of Er:YAG and Er,Cr:YSGG for Medical Lasers

  • Yu, Young-Moon;Jeoung, Suk-Jong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.161-164
    • /
    • 1998
  • Erbium doped garnet crystals were grown by Czochralski method. Relationshipes between crystal quality and crystal growth factors such as pulling rate, rotation rate and concentration of active ions and sensitizers were investigated. Optimum pulling and rotation rate for high quality Er:YAG crystal were 1 mm/hr and 20 rpm and for Er,Cr:YSGG crystal 2-4 mm/hr and 10 rpm respectively. The size of the crystals grown was up to 20-30 mm in diameters and 95-135 mm in length. Er:YAG crystal grown under the nitrogen atmosphere was pink and transparent and Er,Cr:YSGG under the 98% {{{{ { N}_{ 2} }}}} and 2% {{{{ { O}_{2 } }}}} was dark green and transparent. Under the polarizing microscopic observations with crossed polar, striations and {211} core facets were detected. Spectroscopic properties for Er,Cr:YSGG laser rods with <111> axis, 80 mm in length and 6.3 mm in diameter for medical laser applications of 2.79 ${\mu}$m wavelength were manufactured and then laser oscillation was achieved.

  • PDF

Investigation of local back surface field for crystalline silicon solar cells using laser (레이저를 이용한 결정질 실리콘 태양전지 국부적 후면 전극 연구)

  • Kwon, Jung-Young;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Choi, Sung-Jin;Kim, Nam-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.245-245
    • /
    • 2010
  • This paper and the rear passivation experiment was local back surface field Nd:$YVO_4$ green laser and the experiment was used performed to screen printing. Laser power 100%, with a fixed frequency for 60kHz Current of 29A and 30A were tested in two conditions. The point contact distances of 0.2mm, 0.4mm, 0.6mm, 0.8mm and 29A and 30A current conditions, it was found that is suitable for 0.4mm.

  • PDF

Quantitative analysis for evaluating the laser therapy effects of the skin pigmented lesions (피부 색소 질환의 치료 효과 판정을 위한 정량적 분석)

  • Kim, S.C.;Rah, D.K.;Kim, D.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.309-310
    • /
    • 1998
  • Visual observation and subjective assessments lack the objective evaluation of laser therapy effects of the epidermal pigmented lesions. In this study, we proposed the two methods; One is CIE(Commission International d'Eclairage) $L^*,\;a^*,\;b^*$ coordinate system($L^*$ : brightness, $a^*$ : red(+) $\sim$green(-) content, $b^*$ : yellow(+) $\sim$blue(-) content), and the other is the relative color difference measurement. And we applied these two methods for quantitative evaluation of the laser therapy effects.

  • PDF

Emission Properties of ZnO Grown by PLD (PLD로 증착한 ZnO 박막의 발광 특성 분석)

  • Bae, Sang-Hyuck;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.422-424
    • /
    • 2000
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of 355 nm. In order to investigate the emission properties of ZnO thin films, PL measurements with an Ar ion laser as a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited PL bands centered around 390, 510 and 640 nm, labeled near ultra-violet (UV), green and orange bands. Structural properties of ZnO thin films are analized with X-ray diffraction (XRD).

  • PDF