• Title/Summary/Keyword: Green's function method

Search Result 221, Processing Time 0.021 seconds

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

Resonant Frequency in Rectangular Microstrip Patch Antenna on Anisotropic Substrates with Airgap and Permittivity Superstrate (공기갭과 유전체 덮개층을 갖는 이방성 기판 위의 마이크로스트립 패치 안테나의 공진 주파수 해석)

  • 윤중한;이상목;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1600-1606
    • /
    • 2001
  • Resonant frequency in rectangular microstrip patch antenna on anisotropic substrates with airgap and superstrate are analyzed. Dyadic Green function is derived for selected anisotropic material by constitutive relation. From these results, integral equations of electric fields are formulated using Fourier transform in space region. The electric field integral equations are discretized into the matrix form by applying Galerkin\`s moment method. Sinusoidal functions are selected as basis functions because they resemble in the actual standing wave on the patch. To verify the validity of numerical result, we compare our result with existing one and get a good agreement between them. From the numerical results, the resonant frequency in the variation of air gap, patch length and anisotropy ratio are presented and analysed.

  • PDF

Dielectric Cover effect of Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap (공기 갭을 갖는 일축성 매질 위에 마이크로스트립 패치 안테나의 덮개층 영향)

  • Yoon, Joong-Han;An, Gyoo-Chul;Kwak, Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.9
    • /
    • pp.29-39
    • /
    • 2001
  • Dielectric cover effect of rectangular microstrip patch antenna on uniaxial substrates with airgap are studied. First, we derive Dyadic Green function for selected anisotropic material by constitutive relation and then formulate integral equations of electric fields using Fourier transform in space region. Using Galerkin's moment method, we discretize the electric field integral equations into the matrix form and select sinusoidal functions as basis functions. We verify the validity of numerical results and compare the results with existing ones in showing a good agreement between them. When the dielectric cover thickness is varied, the resonant frequencies and input impedances in the variation of air gap, patch length and thickness and permittivity of superstrate are presented and analyzed.

  • PDF

A Design Database for High Speed IC Package Interconnection (고속 집적회로 패키지 인터커넥션을 위한 설계 데이타베이스)

  • ;;;F. Szidarovszki;O.A.Palusinski
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.184-197
    • /
    • 1995
  • In this paper, high speed IC package-to-package interconnections are modeled as lossless multiconductor transmission lines operating in the TEM mode. And, three mathematical algorithms for computing electrical parameters of the lossless multiconductor transmission lines are described. A semi-analytic Green's function method is used in computing per unit length capacitance and inductance matrices, a matrix square root algorithm based on the QR algorithm is used in computing a characteristic impedance matrix, and a matrix algorithm based on the theory of M-matrix is used in computing a diagonally matched load impedance matrix. These algorithms are implemented in a computer program DIME (DIagonally Matched Load Impedance Extractor) which computes electrical parameters of the lossless multiconductor transmission lines. Also, to illustrate the concept of design database for high speed IC package-to-package interconnection, a database for the multi conductor strip transmission lines system is constructed. This database is constructed with a sufficiently small number of nodes using the multi-dimensional cubic spline interpolation algorithm. The maximum interpolation error for diagonally matched load impedance matrix extraction from the database is 1.3 %.

  • PDF

Three-Dimensional Simulations of the Jeans-Parker Instability

  • LEE SANG MIN;HONG SEUNG SOO;KIM AND JONGSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.285-287
    • /
    • 2001
  • We have studied the nonlinear evolution of a magnetized disk of isothermal gas, which is sustained by its self-gravity. Our objective is to investigate how the Jeans, Parker, and convective instabilities compete with each other in structuring/de-structuring large scale condensations in such disk. The Poisson equation for the self-gravity has been solved with a fourth-order accurate Fourier method along with the Green function, and the MHD part has been handled by an isothermal TVD code. When large wavelength perturbations are applied, the combined action of the Jeans and Parker instabilities suppresses the development of the convection and forms a dense core of prolate shape in the mid-plane. Peripheral structures around it are filamentary. The low density filaments connect the dense core to the diffuse upper region. On the other hand, when small wavelength perturbations are applied, the disk develops into an equilibrium state which is reminiscent of the Mouschovias's 2-D non-linear equilibrium of the classical Parker instability under an externally given gravity.

  • PDF

Spectral Domain Analysis of Resonant Frequency in Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap and Superstrate (공기 갭과 덮개층을 갖는 이방성 매질 위의 사각 마이크로스트립 패치 안테나 공진 주파수의 파수 영역 해석)

  • Lee, Sang-Mok;Yoon, Joong-Han;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.91-99
    • /
    • 2001
  • Spectral domain of resonant frequency rectangular microstrip patch antenna on anisotropic substrates and superstrate with airgap are analyzed. First, we derive dyadic Green function for selected anisotropic material by constitutive relation and then formulate integral equations of electric fields using Fourier transform in space region. Using Galerkin's moment method, we discretize the electric field integral equations Into the matrix form and select sinusoidal functions as basis functions. We verify the validity of numerical results and compare the results with existing ones in showing a good agreement between them. The resonant frequencies in the variation of air gap, patch length and permittivity of superstrate anisotrpy ratio of anisotrpic superstrate are presented and analyzed.

  • PDF

Synthesis and Properties of Rhodamine Dye Sensor Material toward detection Response (진단감응 로다민 색소센서재료 합성 및 특성 분석)

  • Kim, Hyung-Joo;Lee, Do-Hyun;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.34-34
    • /
    • 2011
  • Recently, people have concerned about environmental pollution. This environmental pollution occur due to many reasons such as heavy metal ions and anions. In this regard, many researchers have studied organic materials to monitor above reasons to protect environmental pollution. One of the organic materials for this function is chemosensor. This chemosensor has been studied and reported about monitoring toxic heavy metal ions and anions. In this study, the dye sensor was designed and synthesized through reaction of Rhodamine 6G and 1,3-Indanedion. this dye sensor selective detected $Hg^{2+}$ metal ions while showing red color absorption and yellowish-green strong fluorescence emission compared to other heavy metal ions such as $Cu^{2+}$, $Hg^{2+}$, $Ag^{2+}$, $Zn^{2+}$, $Fe^{2+}$ and $Fe^{3+}$. In this regard, we anticipated that this dye senosr can provide an significant material for monitoring mercury which cause environmental pollution. Thus, We investigated detailed properties of this dye sesnor with using UV-Vis absorption and fluorescent spectrophotometer, Job's plot method for metal binding complex, computational simulated calculation named Material Studio 4.3 suite to approach for electron distribution and HOMO/LUMO.

  • PDF

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

An Analysis of the Hydroelastic Response of Large Floating Structures in Oblique Waves (사파중에 놓인 거대 부유체의 응답에 대한 유탄성 해석)

  • In-H. Sim;Jae-D. Yoon;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • In this paper, the fluid-structure interaction of large floating structures has been rigorously analyzed and the shear effect on the structural deformation has been investigated in oblique waves. A constant panel method(CPM) based on the Green function method is implemented for computing the hydrodynamic pressure, while a finite element method(FEM) is applied for the structural response based on the Mindlin plate theory with including shear deformation. In order to validate the method, we compared numerical results with experimental ones of Mega Float carried out by Yago & Endo in head waves. General behavior shows good agreement but the local displacement at the ends is slightly different. The numerical results show that the radiation pressure due to the fluid-structure interaction is locally larger than that of wave excitation and mooring devices greatly reduce the response. It is observed that the shear effects among the total deformation constitutes about 4% in the case of Mega Float in oblique waves.

  • PDF

A Study on Satisfaction Factors of Pedestrian Road in Residence District according to Usage Purpose (보행자전용도로의 이용목적에 따른 만족요인 연구)

  • Yeom, Sung-Jin
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1205-1212
    • /
    • 2011
  • As serving people's activities, pedestrian road systems are basic and necessary facilities in urban structure. To provide and utilize these pedestrian road systems in residential area would enhance urban environment as well as quality of life. For this reason, pedestrian road should be planned by consideration of people's activity in residential area. Evaluation of existing pedestrian road should be also oriented how people use it and what people do in it. This study amis to investigate functions of pedestrian road system throughout evaluation of user's satisfaction in order to improve better pedestrian road system in residential area. The purposes of this study are to analyze components of factors affecting on user's satisfaction, and to find the relationship among affecting factors. For this study, the on-site questionnaire method was applied to 267 individuals who were collected as the study areas where locate Toyogaoka and Kaidori, Japan. The collected data were clarified exploratory factors, and analyzed relationship between the factors and satisfaction by applying quantitative statistical techniques for the mapping investigation, Mann-Whitney u-test, and correlation. The results of this study are follows. The pedestrian road system is more preferred than surroundings of vehicle roads in residential district area where maintains pedestrian road as open space. In addition, satisfactions of the pedestrian road for each purpose were highly evaluated, because of conformability and convenience for usage. Consequently, the pedestrian road which is secure and greening as an open space is well carried out for the living circulation of residents. It would suggest that pedestrian road have to be managed and planned not a function of circulation but an open space system.