• Title/Summary/Keyword: Green's Function Approach

Search Result 68, Processing Time 0.023 seconds

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.

Thermoelastic deformation and stress analysis of a FGM rectangular Plate (경사기능재료 사각 판의 열 탄성 변형과 응력 해석)

  • Kim,Gwi-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A Green's function approach is adopted for analyzing the thermoelastic deformation and stress analysis of a plate made of functionally graded materials (FGMs). The solution to the 3-dimensional steady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green’Às function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical examples are carried out and effects of material properties on thermoelastic behaviors are discussed.

Two-dimensional Unsteady Thermal Stresses in a partially heated infinite FGM Plate (부분 가열된 무한 경사기능재료 판의 2차원 비정상 열응력)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • A Green's function approach based on the laminate theory is adopted for solving the two-dimensional unsteady temperature field and the associated thermal stresses in an infinite plate made of functionally graded material (FGM). All material properties are assumed to depend only on the coordinate x (perpendicular to the surface). The unsteady heat conduction equation is formulated into an eigenvalue problem by making use of the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the two-dimensional unsteady temperature. The associated thermoelastic field is analyzed by making use of the thermal stress function. Numerical analysis for a FGM plate is carried out and effects of material properties on unsteady thermoelastic behaviors are discussed.

  • PDF

NUMERICAL SOLUTION OF A KYNAMIC SHAPE CONTROL PROBLEM

  • Choi, Wan-Sik;Belbas, Stavros A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.275-278
    • /
    • 1995
  • In this paper, we consider a dynamic shape control problem with an example of controlling a flexible beam shape. Mathematical formulations are obtained by employing the Green's function approach. Necessary conditions for optimality are derived by considering the quadratic performance criteria. Numerical results for both of the dynamic and the static cases are obtained and compared.

  • PDF

Forced vibration of surface foundation on multi-layered half space

  • Chen, Lin
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.623-648
    • /
    • 2015
  • A numerical approach is presented for the analysis of the forced vibration of a rigid surface foundation with arbitrary shape. In the analysis, the foundation is discretized into a number of sub squaree-lements. The dynamic response within each sub-element is described by the Green's function, which is obtained by the Fourier-Bessel transform and Precise Integration Method (PIM). Incorporating the displacement boundary condition and force equilibrium of the foundation, it obtains a system of linear algebraic equation in terms of the contact forces within each sub-element. Solving the equation leads to the desired dynamic impedance functions of the foundation. Numerical results are obtained for foundation not only with simple geometrical configurations, such as rectangular and circular foundation, but also the case of irregularly shaped foundation. Several comparisons between the proposed approach and other methods are made. Very good agreement is reached. Also, parametric studies are carried out on the dynamic response of foundation. Addressed in this study are the effects of Poisson's ratio, material damping and contact condition of soil-foundation interface. Several conclusions are drawn the significance of the factors.

A Study on the Design Standard of Green Amenity Space in Interior Space (실내공간에서의 그린 어메니티 스페이스 디자인 기준에 관한 연구)

  • 한영호;김준연
    • Korean Institute of Interior Design Journal
    • /
    • no.28
    • /
    • pp.51-59
    • /
    • 2001
  • This Study tried to approach with a new Point of view about Green Design that had been studied on just Aesthetics and Function and it focused on creating a pleasant environment In the Interiors combing with Horticultural therapy as advanced study in Green Design. This study is barred on understanding that nature, human and space should continue to coexist through realizing relationship between nature and human and overcoming denaturalization and dehumanization and have an opportunity to know what a pleasant space for human is. Although pleasant space can be made by many different methods, this study start from the thought that a space with plants is the best to satisfy human's basic emotion. The method of study is through research and analysis with many kinds of references and examples, and then the results were used to make design guide which introduces Green Amenity Space in residential space. The pleasant space that human pursuits should be the human-centered space as well as the space giving them mental and physical satisfaction beyond space with just function and beauty. Therefore Green Amenity Space is the best space with which human is familiar.

  • PDF

Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate (경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.91-100
    • /
    • 2004
  • A Green's function approach is adopted for analyzing the thermoelastic deformations and stresses of a plate made of functionally graded materials(FGMs). The solution to the 3-dimensional unsteady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green's function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical analysis for a simply supported plate is carried out and effects of material properties on unsteady thermoclastic behaviors are discussed.

NANOCAD Framework for Simulation of Quantum Effects in Nanoscale MOSFET Devices

  • Jin, Seong-Hoon;Park, Chan-Hyeong;Chung, In-Young;Park, Young-June;Min, Hong-Shick
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • We introduce our in-house program, NANOCAD, for the modeling and simulation of carrier transport in nanoscale MOSFET devices including quantum-mechanical effects, which implements two kinds of modeling approaches: the top-down approach based on the macroscopic quantum correction model and the bottom-up approach based on the microscopic non-equilibrium Green’s function formalism. We briefly review these two approaches and show their applications to the nanoscale bulk MOSFET device and silicon nanowire transistor, respectively.

An analytical study on unsteady thermal stresses of functionally graded materials (경사기능재료의 비정상 열응력에 관한 해석적 연구)

  • Choi, Deok-Kee;Kim, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1441-1451
    • /
    • 1997
  • This paper addresses method which can be used for analyzing thermal stresses of a functionally graded material(FGM) using semi-analytical approach. FGM is a nonhomogeneous material whose composition changes continuously from a metal surface to a ceramic surface. An infinite one dimensional FGM plate is considered. The temperature distribution in the FGM is obtained by approximate Green's function solution. To expedite the convergence of the solutions, alternative Green's function solution is derived and shows good agreement with results from finite difference method. Thermal stresses are calculated using temperature distribution of the plate.

A study on relaxation of thermal stresses of heat-resistant systems (열차단 시스템에 있어서의 열응력 완화에 대한 연구)

  • Choi, Deok-Kee;Kim, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 1998
  • This paper addresses a method which can be used for analyzing thermal stresses of a functionally graded material(FGM) using semi-analytical approach. FGM is a nonhomogeneous material whose composition is changed continuously from a metal surface to a ceramic surface. An infinite one dimensional FGM plate is considered. The temperature distribution in the FGM is obtained by approximate Green's function solution. To expedite the convergence of the solutions, alternative Green's function solution is derived and shows good agreement with results from finite difference method. Thermal stresses are calculated using temperature distribution of the plate.