• 제목/요약/키워드: Gray scale

검색결과 440건 처리시간 0.028초

웨이블릿 퓨전에 의한 딥러닝 색상화의 성능 향상 (High-performance of Deep learning Colorization With Wavelet fusion)

  • 김영백;최현;조중휘
    • 대한임베디드공학회논문지
    • /
    • 제13권6호
    • /
    • pp.313-319
    • /
    • 2018
  • We propose a post-processing algorithm to improve the quality of the RGB image generated by deep learning based colorization from the gray-scale image of an infrared camera. Wavelet fusion is used to generate a new luminance component of the RGB image luminance component from the deep learning model and the luminance component of the infrared camera. PSNR is increased for all experimental images by applying the proposed algorithm to RGB images generated by two deep learning models of SegNet and DCGAN. For the SegNet model, the average PSNR is improved by 1.3906dB at level 1 of the Haar wavelet method. For the DCGAN model, PSNR is improved 0.0759dB on the average at level 5 of the Daubechies wavelet method. It is also confirmed that the edge components are emphasized by the post-processing and the visibility is improved.

이산 모스 이론을 이용한 영역 분할 - 맘모그래피에의 응용 (Region Segmentation using Discrete Morse Theory - Application to the Mammography)

  • 한희일
    • 한국멀티미디어학회논문지
    • /
    • 제22권1호
    • /
    • pp.18-26
    • /
    • 2019
  • In this paper we propose how to detect circular objects in the gray scale image and segment them using the discrete Morse theory, which makes it possible to analyze the topology of a digital image, when it is transformed into the data structure of some combinatorial complex. It is possible to get meaningful information about how many connected components and topologically circular shapes are in the image by computing the persistent homology of the filtration using the Morse complex. We obtain a Morse complex by modeling an image as a cubical cellular complex. Each cell in the Morse complex is the critical point at which the topological structure changes in the filtration consisting of the level sets of the image. In this paper, we implement the proposed algorithm of segmenting the circularly shaped objects with a long persistence of homology as well as computing persistent homology along the filtration of the input image and displaying in the form of a persistence diagram.

Skin Condition Analysis of Facial Image using Smart Device: Based on Acne, Pigmentation, Flush and Blemish

  • Park, Ki-Hong;Kim, Yoon-Ho
    • 한국정보기술학회 영문논문지
    • /
    • 제8권2호
    • /
    • pp.47-58
    • /
    • 2018
  • In this paper, we propose a method for skin condition analysis using a camera module embedded in a smartphone without a separate skin diagnosis device. The type of skin disease detected in facial image taken by smartphone is acne, pigmentation, blemish and flush. Face features and regions were detected using Haar features, and skin regions were detected using YCbCr and HSV color models. Acne and flush were extracted by setting the range of a component image hue, and pigmentation was calculated by calculating the factor between the minimum and maximum value of the corresponding skin pixel in the component image R. Blemish was detected on the basis of adaptive thresholds in gray scale level images. As a result of the experiment, the proposed skin condition analysis showed that skin diseases of acne, pigmentation, blemish and flush were effectively detected.

블록 동질성 분할을 이용한 화재불꽃 영역 추출에 관한 연구 (A Study on the Fire Flame Region Extraction Using Block Homogeneity Segmentation)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.169-176
    • /
    • 2018
  • In this study, we propose a new Fire Flame Region Extraction using Block Homogeneity Segmentation method of the Fire Image with irregular texture and various colors. It is generally assumed that fire flame extraction plays a very important role. The Color Image with fire flame is divided into blocks and edge strength for each block is computed by using modified color histogram intersection method that has been developed to differentiate object boundaries from irregular texture boundaries effectively. The block homogeneity is designed to have the higher value in the center of region with the homeogenous colors or texture while to have lower value near region boundaries. The image represented by the block homogeneity is gray scale image and watershed transformation technique is used to generate closed boundary for each region. As the watershed transform generally results in over-segmentation, region merging based on common boundary strength is followed. The proposed method can be applied quickly and effectively to the initial response of fire.

Contrast Enhanced Tone Mapping Operator for High Dynamic Range Image Based on Guided Image Filter

  • 이은성;위승우;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.59-62
    • /
    • 2018
  • In this paper, we propose a contrast enhancement algorithm using guided image filter (GIF). The GIF is used to divide an HDR image into a base layer and a detail layer. The energy scale of base layer determinate the darkness and brightness of the image. However, the detail information in the base layer is difficult to be displayed because of the high brightness and clusters of low brightness. We propose a contrast enhancement method by adjusting the gray level of base layer by subtracting the mean value of itself. It is combined with the detail layer to preserve the detail information. Experiment results show that the proposed algorithm has better performance in detail preservation and contrast enhancement.

  • PDF

이미지와 메타데이터를 활용한 CNN 기반의 악성코드 패밀리 분류 기법 (Malware Classification Schemes Based on CNN Using Images and Metadata)

  • 이송이;문봉교;김준태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.212-215
    • /
    • 2021
  • 본 논문에서는 딥러닝의 CNN(Convolution Neural Network) 학습을 통하여 악성코드를 실행시키지 않고서 악성코드 변종을 패밀리 그룹으로 분류하는 방법을 연구한다. 먼저 데이터 전처리를 통해 3가지의 서로 다른 방법으로 악성코드 이미지와 메타데이터를 생성하고 이를 CNN으로 학습시킨다. 첫째, 악성코드의 byte 파일을 8비트 gray-scale 이미지로 시각화하는 방법이다. 둘째, 악성코드 asm 파일의 opcode sequence 정보를 추출하고 이를 이미지로 변환하는 방법이다. 셋째, 악성코드 이미지와 메타데이터를 결합하여 분류에 적용하는 방법이다. 이미지 특징 추출을 위해서는 본고에서 제안한 CNN을 통한 학습 방식과 더불어 3개의 Pre-trained된 CNN 모델을 (InceptionV3, Densnet, Resnet-50) 사용하여 전이학습을 진행한다. 전이학습 시에는 마지막 분류 레이어층에서 본 논문에서 선택한 데이터셋에 대해서만 학습하도록 파인튜닝하였다. 결과적으로 가공된 악성코드 데이터를 적용하여 9개의 악성코드 패밀리로 분류하고 예측 정확도를 측정해 비교 분석한다.

딥러닝 기반 이산웨이블릿변환 네트워크 (Discrete Wavelet Transform Network based on Deep Learning)

  • 이주원;박찬승;윤영재;김동욱
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.347-350
    • /
    • 2020
  • 본 논문에서는 영상 변환 기술인 이산웨이블릿변환(Discrete Wavelet Transform, DWT)를 딥러닝 기반의 네트워크로 구현한다. 딥러닝 기술 중에도 CNN 기반으로 네트워크를 설계하였으며, 본 DWT 네트워크는 해상도에 의존적이지 않은 계층들로만 구성된다. 데이터세트를 구성할 때 파이썬의 라이브러리를 사용하여 레이블 데이터세트를 구성한다. 128×128크기의 gray-scale 영상을 입력으로 사용하고 이에 대응하는 레이블 데이터세트를 구성하여 1-level DWT를 수행하는 네트워크의 학습을 진행한다. 역방향 변환도 네트워크 설계 후 데이터세트를 구성하여 학습을 진행한다. 학습이 완료된 1-level DWT 네트워크를 반복적으로 사용하여 Multi-level DWT 네트워크를 구성한다. 또한 양자화에 의한 간단한 영상압축 실험을 진행하여 DWT 네트워크의 성능과 압축 등의 응용분야에 활용할 수 있음을 보인다. 설계한 DWT 네트워크의 1-level 순방향 변환 성능은 42.18dB의 PSNR을 보였고, 1-level 역방향 변환 성능은 50.13dB의 PSNR을 보였다.

  • PDF

Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review

  • Seung-Hak Lee;Hyunjin Park;Eun Sook Ko
    • Korean Journal of Radiology
    • /
    • 제21권7호
    • /
    • pp.779-792
    • /
    • 2020
  • Recent advances in computer technology have generated a new area of research known as radiomics. Radiomics is defined as the high throughput extraction and analysis of quantitative features from imaging data. Radiomic features provide information on the gray-scale patterns, inter-pixel relationships, as well as shape and spectral properties of radiological images. Moreover, these features can be used to develop computational models that may serve as a tool for personalized diagnosis and treatment guidance. Although radiomics is becoming popular and widely used in oncology, many problems such as overfitting and reproducibility issues remain unresolved. In this review, we will outline the steps of radiomics used for oncology, specifically addressing applications for breast cancer patients and focusing on technical issues.

블록 명암대비와 프로젝션에 기반한 2차원 바코드 검출 알고리즘 (A 2-Dimensional Barcode Detection Algorithm based on Block Contrast and Projection)

  • 최영규
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.259-268
    • /
    • 2008
  • 일차원 심벌의 데이터 용량 문제를 극복하기 위하여 십 여년 전에 2차원 바코드가 처음으로 소개되었다. 본 논문에서는 그레이 영상에서부터 2차원 바코드 영역을 검출하기 위한 알고리즘을 제안하는데, 특히 손에 들고 사용하는 2D 바코드 인식 시스템에 탑재를 목표로 한다. 제안된 방법에서는 먼저 영상 내 2차원 바코드의 대략적인 위치를 검출하기 위해 블록 명암대비를 바탕으로 한 후보블록 기준을 정의하고, 관심영역으로부터 바코드 영역을 정확히 분리하기 위해 그레이 스케일 프로젝션과 부 화소 처리를 사용한다. 마지막으로 분리된 바코드 영역은 이어지는 디코딩 단계를 위해 역 투시변환을 통해 정규화 된다. 본 논문에서는 QR-코드에 대한 디코딩을 위한 후처리 과정도 소개한다. 제안된 방법은 다양한 조명상태나 인쇄상태 및 투시변환에 의해 영상에 강한 왜곡이 있는 경우에도 좋은 성능을 나타낸다. 실험을 통해 제안된 방법이실시간으로 다양한 종류의 2차원 바코드에 대한 코드영역을 안정적이고 효과적으로 추출해 주는 것을 알 수 있었다.

선군집분할방법에 의한 특징 추출 (Feature Extraction by Line-clustering Segmentation Method)

  • 황재호
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.401-408
    • /
    • 2006
  • 영상신호의 수직축 및 수평축 화소 성분 분석을 통해서, 영상 내부에 존재하는 각 영역의 군집적 특성을 통계 및 영역적으로 처리 분류함으로써 필요한 특징을 추출할 수 있는 새로운 형태의 영역분할처리 알고리즘을 제시한다. 종래의 점처리나 면처리 방식에 비해 이 방식은 수평축과 수직축 상에서의 연속적인 선처리 방식이라고 할 수 있다. 영상을 구성하는 영역간 경계가 암시적으로 구분되어 있으나, 명시적으로는 불투명하고, 영상 특성의 분기점 또한 불명확하고 중복되어 있음으로 인하여 문턱치처리나 분기점처리로 그 영역간 특정을 분할, 추출하기가 곤란한 경우에 이 방식은 우수한 효과가 있다. 수평축 및 수직축 선처리를 통해 각 영역들의 특성들을 군집으로 처리한 다음 처리한 축과 수직 방향으로 축차적 적응진행처리한다. 그 결과 영상 내 각 영역은 화소값의 중복에도 불구하고 하나의 군집으로 자리매김하면서 군집 고유의 화소 값을 갖는다. 그리고 처리후 영상은 각 군집에 부여한 새로운 화소값으로 변환함으로 필요한 특정이 추출된다. 이 방식은 특히 영역 분할을 통해 시각적 효과를 극대화시킬 필요가 있는 경동맥 초음파 의료영상에서 우수한 결과를 보였다.