• Title/Summary/Keyword: Gray Wall

Search Result 74, Processing Time 0.023 seconds

A Study on The Color Examination and Color Planning in the Different Type of Classroom (학교 교실의 용도별 색채분포 및 색채계획에 관한 연구)

  • 김은정;김기환
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2003.05a
    • /
    • pp.65-68
    • /
    • 2003
  • The purpose of this study is examine the color planning in the different type of classroom to establish interior color planning. This study also uses environmental planning and practical use of basic data for color planning to future school facilities. The summary of this study is as followed. The primary school and middle school classrooms as well as the open space classrooms floor color recommended of brown and the primary school wall color is light yellow, middle school wall color is light yellow and brown. The high school classroom color is recommended brown and wall color to light yellow and green system. The recommended floor color of primary school which includes in computer room and language study room, library of the multi-purpose of media room recommended are gray, brown and pink. The recommended wall color in primary school is light gray. The middle school floor color propose gray and light brown and wall recommended color is light brown, gray, ivory with the high school the computer room, language study room and library. The floor color is recommended gray, green and the wall propose blue. Moreover, recognize that importance of color effectiveness in school interior facilities considering with Interior covering material in class room.

  • PDF

Improved PDP Driving Methods Based on Three Wall Charge States

  • Jeong, Ju-Young;Kim, Seok-I;Jung, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.211-214
    • /
    • 2002
  • We present gray scale implementation method based on QMA driving technique. We clarified the mechanism of wall charge quantization through discharge current measurement. We used three wall charge states to implement gray scale. The cells would be one of fully-ON, half-On, and OFF states. We built a five sub-fields 243 level gray scale with sustain pulse count of 2, 6, 18, 54, and 162.

  • PDF

New Gray Scale Implementaion Method for Improving Dynamic False Contours in ac PDPs (동영상 의사윤곽 개선을 위한 새로운 ac PDP 계조구현 방법)

  • Jung Young-Ho;Jeong Ju Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • We developed a new PDP gray scale implementation method on the basis of the quantized memory addressing(QMA) principle. We defined three wall charge states; 'fully-on', 'off', and 'half-on', by controlling the width of address pulses. With these three wall charge state, we were able to express 255 level gray scale with only 7 sub-fields. Furthermore, in contrast to the conventional driving methods, the sub-field combinations for any two adjacent gray levels differ by only 1 sub-field, at worst, and therefore, eliminate the dynamic false contours. Since this method use 7 sub-field, the sustain discharge Period is increased by more than $70\%$ compared to the 12 sub-field method which reduces the dynamic false contours.

Augmentation of Radiative Heat Transfer in an Infinite Cylindrical Pipe Enclosing a Participating Gas (참여기체를 가진 무한 원형관 계의 복사 열전달 증진)

  • 변기홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1955-1962
    • /
    • 1992
  • The purpose of this study is to identify the radiative heat transfer augmentation by a coaxial cylinder introduced in the infinite cylindrical pipe enclosing a participating gas. The gas is either a mixture of water vapor and carbon dioxide or gray. The gas is assumed to be homogeneous at a constant temperature, and has a refractive index of unity. All of the surfaces are opaque and gray, diffusely emitting and reflecting at a constant temperature, The effect of system diameter, diameter ratio, wall emittances, gas and surface temperatures, mixture component on heat transfer augmentation are studied by using the zone method with participating gas radiative properties evaluated from the weighted sum of gray gases model. From the radiative equilibrium condition, the installed wall temperature is formulated and calculated by the iteration method. If the medium is a gray gas, the augmentation observed are negligible. For the range of values studied for a real gas, if the system diameter is larger than about 0.1m the augmentation parameter increases up to about 1.2 as the system diameter increases. The augmentation parameter have a maximum value at a certain diameter ratio. The augmentation parameters decreases as the emittance of the installed wall decreases. If the gas temperature is higher than about 1273 k, the augmentation parameter decreases as the gas temperature increases.

Non-gray Radiation in the Entrance Region of a Smooth Tube (평편한 튜브의 입구 영역에서의 비회복사)

  • Seo, Tae-Beom
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.91-103
    • /
    • 1995
  • Non-gray radiation with convection in the entrance region of a smooth tube is numerically investigated. The fluid is a mixture of carbon dioxide, water vapor, and nitrogen to simulate combustion products of propane. The flow is assumed to be laminar and hydrodynamically and thermally developing. The P-1 approximation is used to simplify the radiative transfer equation and the exponential wide band model is adapted to model the spectral absorption coefficients of non-gray gas mixture. The bulk mean temperature and Nusselt number variation along the tube axis are shown for several inlet and wall temperature pairs to show the effect of temperature on the heat transfer characteristics. Nusselt numbers for simultaneously developing flow are compared to those for thermally developing flow. In addition, the effect of the mole fraction of the non-gray gases on convective and radiative Nusselt numbers is investigated.

  • PDF

Combined raidation-forced convection in a circular tube flow (원관내 유동에서의 복사 및 강제대류 열전달에 관한 연구)

  • 임승욱;이준식;이택식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1652-1660
    • /
    • 1990
  • Combined radiative-convective heat transfer in a hot gas tube flow has been investigated numerically and experimentally. In the numerical analysis, a standard k-.epsilon. model is used for the evaluation of turbulent shear stresses and spherical harmonics method with the Weighted Sum of Gray Gases Model for the solution of radiative transfer equation. In the experimental study measured are the velocity and temperature of the hot gas flow generated by the propane gas combustion, and tude wall heat flux distribution. Numerical results are compared with experimental ones and it is confirmed that P-3 provides quite reliable results in the analysis of the combined radiation-convection system.

Tracking Regional Left Ventricular Wall Motion With Color Kinesis in Echocardiography (심초음파에서 국소 좌심실벽 운동 추적을 위한 Color Kinesis 구현에 관한 연구)

  • Shin, D.K.;Kim, D.Y.;Choi, K.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.579-582
    • /
    • 1997
  • The two dimnesional echocardiography is widely used to evaluate regional wall motion abnormaility, because of its abilities to depict left ventricluar wall motion. A new method, color kinesis is a technology or echocardiographic assessment of left ventricular wall motion. In this paper, we proposed a algorithm or color kinesis which is based on acoustic quantification and automatically detects endocardial motion during systole on a frame-by-frame basis. The echocardiograms were obtained in the short-axis views in normal subjects. Automated edge detection and endocardial contour tracing algorithm was applied to each frames, quantitative analysis based on segmentation was performed, and pre-defined color overlays superimposed on the gray scale images. Segmental analysis of color kinesis provided automated, quantitative diagnosis of regional wall motion abnormality.

  • PDF

A study on the wsggm-based spectral modeling of radiation properties of water vapor (회체가스중합법에 의한 수증기의 파장별 복사물성치 모델에 관한 연구)

  • Kim, Uk-Jung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3371-3380
    • /
    • 1996
  • Low resolution spectral modeling of water vapor is carried out by applying the weighted-sum-of-gray-gases model (WSGGM) to a narrow band. For a given narrow band, focus is placed on proper modeling of gray gas absorption coefficients vs. temeprature relation used for any solution methods for the Radiative Transfer Equation(RTE). Comparison between the modeled emissivity and the "true" emissivity obtained from a high temperatue statistical narrow band parameters is made ofr the total spectrum as well as for a few typical narrow bands. Application of the model to nonuniform gas layers is also made. Low resolution spectral intensities at the boundary are obtained for uniform, parabolic and boundary layer type temeprature profiles using the obtained for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with 9 gray gases. The results are compared with the narrow band spectral intensities as obtained by a narrow band model-based code with the Curtis-Godson approximation. Good agreement is found between them. Local heat source strength and total wall heat flux are also compared for the cases of Kim et al, which again gives promising agreement.

CMF Design Trends of Wall-covering for Interior Showrooms: A Case Study of New York D&D Building in 2019 (인테리어 쇼룸에 전시된 벽지의 CMF 디자인 경향 연구 -2019년 뉴욕 D&D Building 사례를 중심으로 -)

  • Lee, Joonhan;Kim, Sun Mee
    • Journal of Fashion Business
    • /
    • v.23 no.4
    • /
    • pp.1-12
    • /
    • 2019
  • The study investigated trends in wall-covering displays in interior design stores. Although studies reported design trends at well-known exhibitions overseas such as Heimtextil and Maison objet, many different cases present actual realistic design flows. This study analyzes the actual market flow rather than design as an exhibition concept, and presents the interior CMF trends in 2019. The CMF design of wall-covering displayed in New York D&D Building in 2019 can be summarized as follows: W was the most frequently seen show-window, but like R, which is a strong color, it is also used to convey surrealistic images. The store entrance was designed to attract consumers' attention inside, and was constructed to reflect the actual trend. In the 2019 New York market, the wall-covering of Gray and YR were displayed through the shop entrance to suggest substantial sales. In addition, the demand for gold metallic wall-covering is significant as gold was strong in many forms. This study represents a valuable resource to identify trends in wall-covering from 2017 to 2019 compared with previous studies. This study represents a valuable foundation for a wide range of topics related to the use of wall-covering for interior decoration.

Radiation-Laminar Free Convection in a Square Duct with Specular Reflection by Absorbing-Emitting Medium

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1346-1354
    • /
    • 2002
  • The purpose of this work is to study the effects of specularly reflecting wall under the combined radiative and laminar free convective heat transfer in an infinite square duct. An absorbing and emitting gray medium is enclosed by the opaque and diffusely emitting walls. The walls may reflect diffusely or specularly. Boussinesq approximation is used for the buoyancy term. The radiative heat transfer is evaluated using the direct discrete ordinates method. The parameters under considerations are Rayleigh number, conduction to radiation parameter, optical thickness, wall emissivity and reflection mode. The differences caused by the reflection mode on the stream line, and temperature distribution and wall heat fluxes are studied. Some differences are observed for the categories mentioned above if the order of the conduction to radiation parameter is less than order of 10$\^$-3/ fer the range of Rayleigh number studied. The differences at the side wall heat flux distributions are observed as long as the medium is optically thin. As the top wall emissivity decreases, the differences between these two modes are increased. As the optical thickness decreases at the fixed wall emissivity, the differences also increase. The difference of the streamlines or the temperature contours is not as distinct as the side wall heat flux distributions. The specular reflection may alter the fluid motion.