• 제목/요약/키워드: Gravity Sensor

검색결과 127건 처리시간 0.029초

3축 가속도 센서를 이용한 위치 검출 알고리즘 (Position Detection Algorithms Using 3-Axial Accelerometer Sensor)

  • 김남진;조영희;최이권
    • 한국IT서비스학회지
    • /
    • 제10권1호
    • /
    • pp.65-72
    • /
    • 2011
  • In this paper, we consist of three dimensional acceleration sensor as a small-sized sensor module to acquire base technologies that need to estimate exhibition audience' moving distance. and that we developed algorism and device that can calculate acceleration in gravity direction with attaching it to people's body part without regard to three dimensional direction. By making use of the sensor module, we have to process the data that let it quantitatively process possible to measure people's walk and movement by computer system. We normalized sensor output data in the process of change from sensor module to acquisition of data, rectangular coordinates and single scalar acceleration value in gravity direction. Printed out sensor data attaching sensor module to people's body part is used for motion pattern detection after normalization, Motion sensor devised mode change algorism because it print data of other pattern according to attached position of body. For algorism design, we collected data occurring during walking about subject and we also defined occurring problem domain after analyzing the data. We settle defined problem domain and that we simulated the walking number measuring instrument with highly efficient in restricted environment.

Efficiency of Superconducting Gravimeter Observations and Future Prospects

  • Neumeyer Juergen
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.15-29
    • /
    • 2005
  • Superconducting Gravimeters (SG) are the most sensitive instruments for measuring temporal gravity variations. The gravimeter is an integrating sensor therefore the gravity variations caused by different sources must be separated for studying a special effect by applying different models and data analysis methods. The present reduction methods for gravity variations induced by atmosphere and hydrosphere including the ocean and the detection and determination of the most surface gravity effects are shown. Some examples demonstrate the combination of ground (SG) and space techniques especially the combination of SG with GRACE satellite derived temporal gravity variations. Resulting from the performance of the SG and the applied data analysis methods some proposals are made for future SG applications.

Stewart Platform 방시그이 6축 힘-토크 센서에 관한 실험적 해석 (An Experimental Analysis on the Stewart Platform-Based 6 Axis Force-Torque Sensor)

  • 한정훈;강철구
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.78-83
    • /
    • 1997
  • The paper presents the experimental analysis of a Stewart platform-based force-torque senor. The closed-form solution of forward kinematics of the Stewart platform is derived approximately by way of a linearization technique, and the solution is used in the force analysis of the force-torque sensor. An exper- mental studies show that the proposed method including gravity compensation algorithm is valid for Stew- art platform-based force-torque sensors. The performance of the developed force-torque sensor is evaluated in view of accuracy and linearity in measurements.

  • PDF

우리별 1호의 자세제어 시스템 (ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1)

  • 이현우;김병진;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.67-81
    • /
    • 1996
  • The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  • PDF

굴삭기의 버킷 끝단 위치인식에 관한 연구 (A Study on Position Recognition of Bucket Tip for Excavator)

  • 김재훈;배종호;정우용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권1호
    • /
    • pp.49-53
    • /
    • 2016
  • The accurate calculation of bucket tip position has a large influence on showing the motion of an excavator on the display device of the excavator and controlling the excavator automatically. It is generally known that Inertial Measurement Unit (IMU) sensors are more accurate than accelerometer-based sensors while the boom, arm or bucket moves because additional forces beyond gravity add additional acceleration to the sensors. To prove the accuracy difference between the two types of sensors, a position recognition system using an accelerometer-based sensor and an IMU sensor is implemented on the excavator. The experimental results show that the system using the IMU sensor significantly reduces the position recognition error while bucket moves and additional force beyond gravity exists.

3축 가속도 센서 데이터의 처리와 응용 (Processing of 3-Axial Accelerometer Sensor Data and Its Application)

  • 김남진;홍주현;이태수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 추계 종합학술대회 논문집
    • /
    • pp.548-551
    • /
    • 2005
  • 본 연구에서는 3푹 가속도센서를 소형 센서모듈로 구성하고 이를 사람의 신체 부위에 부착하여 센서의 3차원적 방향에 구애되지 않고 동작에 의한 중력방향의 가속도를 계산할 수 있는 장치와 알고리즘을 개발하였다. 센서모듈을 이용하여 컴퓨터 시스템에 의해 사람의 보행 및 동작을 측정하기 위해서는 정량적인 처리가 가능하도록 데이터를 가공하여야 한다. 센서 모듈로부터 데이터의 획득, 가능한 범위의 직교 좌표계로 변환, 중력방향의 단일 스칼라 값 변환의 과정으로 센서 출력 데이터를 정규화 하였다.

  • PDF

무선계측기법을 이용한 회전 송출공의 압력계수 측정 (Measurement of Pressure Coefficient in Rotating Discharge Hole by Telemetric Method)

  • 구남희;고상근;하경표
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1248-1255
    • /
    • 2003
  • Pressure coefficient in a rotating discharge hole was measured to gain insight into the influence of rotation on the discharge characteristics of rotating discharge holes. Pressures inside the hole were measured by a telemetry system that had been developed by the authors. The telemetry system is characterized by the diversity of applicable sensor type. In the present study, the telemetry system was modified to measure static pressure using piezoresistive pressure sensors. The pressure sensor is affected by centrifugal force and change of orientation relative to the gravity. The orientation of sensor installation for minimum rotating effect and zero gravity effect was found out from the test. Pressure coefficients in a rotating discharge hole were measured in longitudinal direction as well as circumferential direction at various rotating speeds and three different pressure ratios. From the results, the behaviors of pressure coefficient that cannot be observed by a non-rotating setup were presented. It was also shown that the discharge characteristics of rotating discharge hole is much more influenced by the Rotation number irrespective of pressure ratio.

Unrestricted Measurement Method of Three-dimensional Walking Distance Utilizing Body Acceleration and Terrestrial Magnetism

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.94.5-94
    • /
    • 2001
  • Unrestricted measurement method of three-dimensional walking distance utilizing body acceleration and terrestrial magnetism is discussed. The three-dimensional walking distance is derived by the integration of the three dimensional acceleration of foot during swing phase. Since the sensor system attached on the foot rotates during swing phase, the acceleration data measured on the foot include acceleration of gravity which causes inaccurate calculation of the velocity and the distance. Three gyros are used to compensate the rotation of the sensor system. Moreover, one geomagnetic sensor is employed to derive the heading direction of the subject Healthy volunteers performed ...

  • PDF

전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구 (A Study on the Two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force)

  • 배형섭;양택주;이육형;주동우;박명관
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.29-37
    • /
    • 2005
  • In this study, the control of the free surface deformation of a magnetic fluid for the change in electromagnetic force is discussed. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. Magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage sealing, oscillator for surface control, boundary layer control, MHD, flow control, flow using magnetic levitation system and surface actuator. This study show the deformation of surface rise due to the intensity of the magnetic field and possibility of two-dimensional control of magnetic fluid through the feedback data of hall sensor.

저가형 MEMS 센서를 이용한 움직이는 물체의 자세 추정 (Attitude Estimation of the Moving Bodies using the Low-Cost MEMS Sensor)

  • 허오철;최군호;박기헌
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.41-47
    • /
    • 2010
  • In this paper we suggest an improvement upon the previous method of estimating a body's attitude. This paper presents a method that overcomes the shortcomings of previous studies. Applying the method of separating the acceleration of gravity component from the accelerometer's output improves the performance of the attitude estimation and extends the scope. In order to apply the method of the attitude estimation in an actively moving body, a new acceleration value containing the acceleration of gravity is calculated. This paper also proposes the method which minimizes the estimation error in estimating the moving body's attitude which is changing rapidly. Finally, this paper suggests a method that detects the gyroscope's drift and compensates for this drift using accelerometer. Applying the method improves the performance of the attitude estimation.