• Title/Summary/Keyword: Gravity Inverted Pendulum Mode

Search Result 6, Processing Time 0.024 seconds

Biped Robot Control for Stable Walking (바이패드 로봇의 안정적인 거동을 위한 제어)

  • 김경대;박종형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

Attitude Control of A Two-wheeled Mobile Manipulator by Using the Location of the Center of Gravity and Sliding Mode Controller (무게중심위치와 슬라이딩 모드 제어를 통한 이륜형 모바일 머니퓰레이터의 자세제어)

  • Kim, Min-Gyu;Woo, Chang-Jun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.758-765
    • /
    • 2015
  • This paper proposes an attitude control system to keep the balance for a two-wheeled mobile manipulator which consists of a mobile platform and a three D.O.F. manipulator. In the conventional control scheme, complicated dynamics of the manipulator need to be derived for balancing control of a mobile manipulator. The method proposed in this paper, however, three links are considered as one body of mass and the dynamics are derived easily by using an inverted pendulum model. One of the best advantage of a sliding mode controller is low sensitivity to plant parameter variations and disturbances, which eliminates the necessity of exact modeling to control the system. Therefore the sliding mode control algorithm has been adopted in this research for the attitude control of mobile platform along the pitch axis. The center of gravity for the whole mobile manipulator is changing depending on the motion of the manipulator. And the orientation variation of center of gravity is used as reference input for the sliding mode controller of the pitch axis to maintain the center of gravity in the middle of robot to keep the balance for the robot. To confirm the performance of controller, MATLAB Simulink has been used and the resulting algorithms are applied to a real robot to demonstrate the superiority of the proposed attitude control.

Locomotion Control of Biped Robots with Serially-Linked Parallel Legs (이중 병렬형 다리 구조를 가진 2족보행로봇의 보행제어)

  • Yoon, Jung-Han;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.683-693
    • /
    • 2010
  • In this paper, we propose a new parallel mechanism for the legs of biped robots and the control of the robot's locomotion. A leg consists of two 3-DOF parallel platforms linked serially: one is an orientation platform for a thigh and the other is the 3-DOF asymmetric parallel platform for the shank. The desired locomotion trajectory is generated on the basis of the Gravity-Compensated Inverted Pendulum Mode (GCIPM) in the sagittal direction and the Linear Inverted Pendulum Mode (LIPM) in the lateral direction, respectively. In order to simulate the ground reaction force, a 6-DOF elastic pad model is used underneath each of the soles. The performance and effectiveness of the proposed parallel mechanism and locomotion control are shown by the results of computer simulations of a 12-DOF parallel biped robot using $SimMechanics^{(R)}$.

Redundancy Trajectory Generation for Biped Robot Manipulators (2족 보행로봇을 위한 여유자유도 궤적 생성)

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1014-1022
    • /
    • 2009
  • A biped robot in locomotion can be regarded to be kinetically redundant in that the link-chain from its foot on the ground to its swing foot has more degrees of freedom that needed to realize stable bipedal locomotion. This paper proposes a new method to generate a trajectory for bipedal locomotion based on this redundancy, which directly generates a locomotion trajectory at the joint level unlike some other methods such as LIPM (linear inverted-pendulum mode) and GCIPM (gravity-compensated inverted-pendulum mode), each of which generates a trajectory of the center of gravity or the hip link under the assumption of the dominance of the hip-link inertia before generating the trajectory of the whole links at the joint level. For the stability of the trajectory generated in the proposed method, a stability condition based on the ZMP (zero-moment point) is used as a constraint as well as other kinetic constraints for bipedal motions. A 6-DOF biped robot is used to show how a stable locomotion trajectory can be generated in the sagittal plane by the proposed method and to demonstrate the feasibility of the proposed method.

Optimal Trajectory Generation for Biped Robots Walking Up-and-Down Stairs

  • Kwon O-Hung;Jeon Kweon-Soo;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2006
  • This paper proposes an optimal trajectory generation method for biped robots for walking up-and-down stairs using a Real-Coded Genetic Algorithm (RCGA). The RCGA is most effective in minimizing the total consumption energy of a multi-dof biped robot. Each joint angle trajectory is defined as a 4-th order polynomial of which the coefficients are chromosomes or design variables to approximate the walking gait. Constraints are divided into equalities and inequalities. First, equality constraints consist of initial conditions and repeatability conditions with respect to each joint angle and angular velocity at the start and end of a stride period. Next, inequality constraints include collision prevention conditions of a swing leg, singular prevention conditions, and stability conditions. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot model that consists of seven links in the sagittal plane. The optimal trajectory is more efficient than that generated by the Modified Gravity-Compensated Inverted Pendulum Mode (MGCIPM). And various trajectories generated by the proposed GA method are analyzed from the viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

New Parallel Mechanism for Biped Robots (병렬형 다리 구조를 가진 2족 보행 로봇의 설계 및 제어)

  • Yoon, Jung-Han;Yeon, Je-Sung;Kwon, O-Hung;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.810-815
    • /
    • 2004
  • In this paper, we propose new parallel mechanism of a 3 dimensional biped robot whose each leg is composed of two 3-dof parallel platforms linked serially. This proposed parallel mechanism is able to move freely in the man-made environment and is applied to various fields, such as medical, welfare, and so on. And a total weight of each leg is expected to be lighter than serial linked leg. One side leg consists of a 3-dof orientation platform and 3-dof asymmetric parallel platform. The former consists of three active linear actuators and seven passive joints, and the latter of two active linear actuators, one active rotational actuator and eight passive joints. Thus, there are two kinds of parallel platforms each chain's elements and active joint's positions are different for the biped robot to move freely like a serial link without the kinematics constraints. The effectiveness and the performance of the proposed parallel mechanism and locomotion trajectory are shown in computer simulations with a 12-DOF parallel biped robot.

  • PDF