• 제목/요약/키워드: Gravitational Field

검색결과 165건 처리시간 0.029초

진공환경에서 수평 웨이퍼 표면으로의 입자침착 해석 (Analysis on Particle Deposition onto a Horizontal Semiconductor Wafer at Vacuum Environment)

  • 유경훈
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1715-1721
    • /
    • 2002
  • Numerical analysis was conducted to characterize the gas flow field and particle deposition on a horizontal freestanding semiconductor wafer under the laminar flow field at vacuum environment. In order to calculate the properties of gas, the gas was assumed to obey the ideal gas law. The particle transport mechanisms considered were convection, Brownian diffusion and gravitational settling. The averaged particle deposition velocities and their radial distributions fnr the upper surface of the wafer were calculated from the particle concentration equation in an Eulerian frame of reference for system pressures of 1 mbar~1 atm and particle sizes of 2nm~10$^4$ nm(10 ${\mu}{\textrm}{m}$). It was observed that as the system pressure decreases, the boundary layer of gas flow becomes thicker and the deposition velocities are increased over the whole range of particle size. One thing to be noted here is that the deposition velocities are increased in the diffusion dominant particle size range with decreasing system pressure, whereas the thickness of the boundary layer is larger. This contradiction is attributed to the increase of particle mechanical mobility and the consequent increase of Brownian diffusion with decreasing the system pressure. The present numerical results showed good agreement with the results of the approximate model and the available experimental data.

한반도 서해안의 후기 홀로세 해수면 변동 곡선에 대한 검토 (Review on the Relative Sea-level Changes in the Yellow Sea during the Late Holocene)

  • 최성자
    • 자원환경지질
    • /
    • 제51권5호
    • /
    • pp.463-471
    • /
    • 2018
  • 서해안에서 보고되고 있는 다수의 해수면 변동 곡선들은 모두 상대해수면(Relative sea-level) 변동곡선으로 사료된다. 서해안의 상대해수면 변동곡선들은 크게 1) 홀로세 해수면은 현 해수면보다 높은 적이 없었다는 학설과 2) 중기 홀로세에 해수면은 현재 해수면보다 수m 높았으며, 이 후 서서히 하강하면서 현해수면에 도달하였다는 학설로 대표된다. 전자는 절대해수면 곡선과 대비되는 반면, 후자는 빙하로부터 원거리에 위치하고 있는 대륙의 연안 역에서 나타나는 상대해수면곡선과 대비된다. 해수면 곡선 복원도에 활용된 자료들을 검토하여 보았을 때, 대부분 기 발표된 논문의 자료들을 인용하였으나, 그 인용에 있어 분석자료의 선택적 사용으로 서로 다른 결과들이 도출되었다. 그럼에도 불구하고, 후자의 자료들은 모두 군산이북지역으로부터 얻어진 것으로, 중기 홀로세 이후 서서히 하강하는 해수면 변동곡선이 군산 이북지역을 대표하고 있는 것으로 생각된다. 서해안 상대해수면 곡선은 빙하평형조절(GIA:Glacio isostatic adjustment)과 이에 수반된 중력 끌림(Gravitational attraction)에 의한 요인뿐만 아니라 그 이외의 지엽적으로 발생하는 지구조 운동 등에 의하여 변동될 수 있다. 그러므로, 서해안역의 상대해수면곡선 양상이 원거리 지역에서 나타나는 것과 대비 되지만, 서해안의 활발한 지진활동과 한반도에 분포하는 다수의 단층 존재를 미루어 볼 때, 지역적으로 발생하는 지구조 운동이 상대해수면 변동에 영향을 끼칠 수 있었을 것으로 예상된다.

타원판에 의한 자력 및 자력 변화율 텐서 반응식 (Expressions of Magnetic Field and Magnetic Gradient Tensor due to an Elliptical Disk)

  • 임형래
    • 지구물리와물리탐사
    • /
    • 제27권2호
    • /
    • pp.108-118
    • /
    • 2024
  • 이 논문에서는 타원판의 자력과 자력 변화율 텐서 반응식을 유도하였다. 화성암 관입이나 킴벌라이트 구조 등은 축 대칭성을 가지면서 단면이 타원인 경우가 많다. 타원 단면의 넓이가 변하는 타원 기둥은 타원판의 조합으로 모사할 수 있다. 타원판의 자력 반응은 이전 논문(Rim, 2024)에서 유도한 중력 변화율 텐서에 자화 방향에 대한 정보를 포함시킨 포아송 관계식을 이용하여 유도하였다. 타원판의 자력 변화율 텐서는 벡터 자력을 미분하여 유도하는데 타원판의 인력 퍼텐셜을 각 축방향으로 3회 미분한 총 10개의 삼중 미분 함수를 구하는 것과 동일하다. 미분의 순서는 바꾸는 것이 가능하므로 결과적으로 자력 변화율 텐서는 타원판의 인력 퍼텐셜을 3회 미분한 후, 복소 평면에서 타원판의 경계를 폐곡선으로 하는 경로를 따라 선적분으로 변환하여 유도된다. 이 논문에서 복소 평면에서 선적분으로 유도한 자력 및 자력 변화율 텐서 반응식은 립쉬츠-한켈 적분으로 유도한 원판의 자력 및 자력 변화율 텐서 반응식과 완벽하게 일치함을 보였다.

반복학습제어기를 이용한 자석식 자동 파이프 절단 로봇의 제어 (Control of Automatic Pipe Cutting Robot with Magnet Binder Using Learning Controller)

  • 이성환;김국환;임성수;이순걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.541-546
    • /
    • 2005
  • Tracking control of an automatic pipe cutting robot (APCROMB) is studied. Using magnetic force APCROMB, which is designed and developed in Kyung Hee University, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROMB varies as it rotates around the cylindrical pipe laid in the gravitational field. To maintain a constant velocity and consistent cutting performance against the varying gravitational effect, the authors adopt a multi-rate repetitive learning controller (MRLC), which learns the required effort to cancel the repetitive tracking errors caused by nonlinear effect. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROMB and the pipe also cause degradation in the cutting process. In order to identify those nonlinear disturbances the position estimation based on the encoder attached at the motor is not good enough. To identify the absolute angular position of APCROMB the authors propose the angular position estimation based on the signals from a MEMS-type two-axis accelerometer mounted on APCROMB. The tracking performances of APCROMB with a MRLC using the encoder-based position estimation is experimentally measured and results are shown. Also the difference between the encoder-based angular displacement measurement and the accelerometerbased angular displacement measurement is included.

  • PDF

The Limited Impact of AGN Outflows: IFU study of 20 local AGNs

  • Bae, Hyun-Jin;Woo, Jong-Hak;Karouzos, Marios;Gallo, Elena;Flohic, Helene;Shen, Yue;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.28.1-28.1
    • /
    • 2017
  • To investigate AGN outflows as a tracer of AGN feedback on the host galaxies, we perform integral-field spectroscopy of 20 type 2 AGNs at z<0.1 using the Magellan/IMACS and the VLT/VIMOS. The observed objects are luminous AGNs with the [O III] luminosity >$10^{41.5}erg/s$, and exhibit strong outflow signatures in the [O III] kinematics. We obtain the maps of the narrow and broad components of [O III] and $H{\alpha}$ lines by decomposing the emission-line profile. The broad components in both [O III] and $H{\alpha}$ represent the non-gravitational kinematics, (i.e., gas outflows), while the narrow components represent the gravitational kinematics (i.e., rotational disks), especially in $H{\alpha}$. By using the spatially integrated spectra within the flux-weighted size of the narrow-line region, we estimate the outflow energetics. The ionized gas mass is $(1.0-38.5){\times}10^5M_{\odot}$, and the mean mass outflow rate is $4.6{\pm}4.3M_{\odot}/yr$, which is a factor of ~260 higher than the mean mass accretion rate $0.02{\pm}0.01M_{\odot}/yr$. The mean energy injection rate is $0.8{\pm}0.6%$ of the AGN bolometric luminosity Lbol, while the mean momentum flux is $(5.4{\pm}3.6){\times}L_{bol}/c$, except for two most kinematically energetic AGNs. The estimated energetics are consistent with the expectations for energy-conserving outflows from AGNs, yet we do not find any supporting evidence of instantaneous star-formation quenching due to the outflows.

  • PDF

KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES

  • KIM, SEUNG-LEE;LEE, CHUNG-UK;PARK, BYEONG-GON;KIM, DONG-JIN;CHA, SANG-MOK;LEE, YONGSEOK;HAN, CHEONGHO;CHUN, MOO-YOUNG;YUK, INSOO
    • 천문학회지
    • /
    • 제49권1호
    • /
    • pp.37-44
    • /
    • 2016
  • The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.

Wide-Field Imaging Telescope-0(WIT0): A New Wide-Field 0.25 m Telescope at McDonald Observatory

  • Lee, Sang-Yun;Im, Myungshin;Pak, Soojong;Ji, Tae-Geun;Lee, Hye-In;Hwang, Seong Yong;Marshall, Jennifer;Prochaska, Travis;Gibson, Coyne A.
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.34.2-34.2
    • /
    • 2017
  • A small wide-field imaging telescope is a powerful instrument to survey the Universe: wide-field image can monitor the variability of many sources at a time, e.g. young stellar objects and active galactic nuclei, and it can be an effective way to locate transient sources without precise positional information such as gravitational wave sources or some gamma-ray bursts. In February 2017, we installed a 0.25 m f/3.6 telescope on the McDonald 0.8 m telescope as a piggyback system. With a $4k{\times}4k$ CCD camera, the telescope has a $2.35{\times}2.35deg$ field-of-view. Currently, it is equipped with Johnson UBVRI filters and 3 narrow-band filters: $H{\alpha}$, OIII and SII. We will present the installation process, and the telescope performance such as detection limit and image quality based on the data from commissioning observations. We will also discuss possible scientific projects with this system.

  • PDF

Subaru Strategy for 2020's

  • Arimoto, Nobuo
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.27.2-27.2
    • /
    • 2015
  • Strategic plan of Subaru science and operation will be introduced. Currently, Subaru has wide variety of instruments, conducts only classical observations, with less than 5 nights allocation for each proposal. Near future, Subaru will emphasize on surveys, introduce queue mode observations, reduce the number of instruments, and concentrate on large size programs. Large surveys are called Subaru Strategic Programs (SSPs). HSC-SSP is on-going (300 nights for 5 years), PFS-SSP will start at around 2020 (360 nights for 5 years), and IRD-SSP from 2016 (TBD). HSC science includes 1) cosmology with gravitational lensing, 2) lensing studies of galaxies and clusters, 3) photometric redshifts, 4) the Solar system, 5) the Milky Way and the Local Group, 6) AGN/quasars, 7) transients, 8) galaxies at low/high redshifts, and 9) clusters of galaxies. PFS science includes 1) cosmology, 2) galaxy & AGN, and 3) galactic archaeology. Subaru is planning the third pillar instrument, so called ULTIMATE-Subaru, which is the GLAO optical-NIR wide field camera & multi-IFU spectrograph for finding galaxies at ultra high redshift (z>10). Finally the strategy from Subaru to TMT will be presented. Subaru will conduct four major SSPs (HSC, PFS, IRD, ULTIMATE-Subaru) in coming decade to provide targets to TMT. HSC performs wide field surveys to reveal the distribution of dark matter in the Universe. IRD surveys Earth-like young planets to discover ~20 Earth-like habitable planets. PFS studies the expanding Universe to provide a few million emission line galaxies to TMT.

  • PDF

Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권2호
    • /
    • pp.97-106
    • /
    • 2010
  • To prepare for a Korean lunar orbiter mission, a precise lunar orbit propagator; Yonsei precise lunar orbit propagator (YSPLOP) is developed. In the propagator, accelerations due to the Moon's non-spherical gravity, the point masses of the Earth, Moon, Sun, Mars, Jupiter and also, solar radiation pressures can be included. The developed propagator's performance is validated and propagation errors between YSPOLP and STK/Astrogator are found to have about maximum 4-m, in along-track direction during 30 days (Earth's time) of propagation. Also, it is found that the lifetime of a lunar polar orbiter is strongly affected by the different degrees and orders of the lunar gravity model, by a third body's gravitational attractions (especially the Earth), and by the different orbital inclinations. The reliable lifetime of circular lunar polar orbiter at about 100 km altitude is estimated to have about 160 days (Earth's time). However, to estimate the reasonable lifetime of circular lunar polar orbiter at about 100 km altitude, it is strongly recommended to consider at least $50\;{\times}\;50$ degrees and orders of the lunar gravity field. The results provided in this paper are expected to make further progress in the design fields of Korea's lunar orbiter missions.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF