• Title/Summary/Keyword: Grating Phase

Search Result 220, Processing Time 0.022 seconds

Fabrication of the Photoresist Surface-Relief Phase Holographic Grating and Its Performance Test (포토레지스트 surface-Relief 위상형 홀로그라피 분광회절격자의 제작 및 성능평가)

  • 정만호;이인원;이상배;박민용
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.868-873
    • /
    • 1987
  • Holographic diffraction gratings which are the core element of the optical instruments such as a spectrophotometer have been fabricated using the photoresist as a recording material. A 488nm line from an argon laser is used in making the gratings. Transmission type surface-relief phase grating and reflection type which is fabsricated by coating the aluminum on the transmission type with thickness 2000\ulcornerare fabricated, the spatical frequency of which are 1200 lines/mm. Diffraction efficiency, scattered light and wave-front aberratin are measured to test the performance of the developed gratings. A marimum diffraction efficiency is given when light is incident at the Bragg angle. Theoretical efficiency is about 80%, but measured efficiency of the transmission type and reflection type is 50% and 45%, respectively.

  • PDF

Design and Analysis of a Widely Tunable Sampled Grating DFB Laser Diode with High Output Power

  • Kim, Soo-Hyun;Chung, Young-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.13-16
    • /
    • 2004
  • A widely tunable SG-DFB (Sampled Grating Distributed Feedback) laser diode is proposed and its feasibility is confirmed through simulation. The new SG-DFB laser diode is composed of a pair of sampled gratings, some parts of which are gain sections and the other parts of which are phase control sections. It is shown that a few tens of nanometers can be tuned through the adjustment of two currents into the phase control sections. Higher output power is expected compared with a SG-DBR laser diode with similar parameters. The dynamic single mode operation is also observed in the time-domain simulation.

High Sensitivity Analysis of Optical Bio-Sensor based on Grating-Assisted Strip Directional Coupler (격자 구조형 스트립 방향성 결합기에 기초한 광 바이오-센서의 고 민감도 분석)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.157-162
    • /
    • 2023
  • A highly sensitive refractive index bio-sensor based on grating-assisted strip directional coupler (GASDC) is proposed. The sensor is designed using two asymmetric strip waveguides with a top-loaded grating structure in one of the waveguides. Maximum light couples from one waveguide to the other at the resonance wavelength satisfying phase-matching condition (PMC), and it shows that the change in phase-matching condition with the change in refractive index of the analyte medium in the cover region can be used as a measure of the sensitivity. The proposed sensor will be an on-chip device with a high refractive index sensitivity, and the sensor configuration offers a low propagation loss, thereby enhancing the sensitivity. Furthermore, variation of the sensitivity with the waveguide parameters of sensor is evaluated to optimize the design.

Coupling Efficiency of Asymmetric Grating-Assisted Directional Coupler (비대칭 격자 구조형 방향성 결합기의 결합효율)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.187-192
    • /
    • 2017
  • Rigorous longitudinal modal transmission-line theory (L-MTLT) is applied to analyze maximum power transfer in asymmetric grating-assisted directional couplers(A-GADC). By defining a coupling efficiency amenable to rigorous analytical solutions and interference between symmetric and asymmetric supermodes, the power exchange of TE modes as a function of propagation distance is numerically evaluated. The numerical result reveals that maximum power transfer occurs at a grating period ${\Lambda}_{eq}$, in which the insertion loss of supermodes is equal to each other. That is, it is generally different from conventional phase-matching condition of GADC. Furthermore, as the asymmetric profile of grating change to symmetrical profile, the coupling length decreases and the coupling efficiency for power transmission increases.

Low Coherence Interferometer for Measurement of Path Length Errors in Arrayed-Waveguide Grating (Arrayed-Waveguide Grating의 경로 오차 측정을 위한 저 간섭 광원 간섭계)

  • Song, Young-Ki;Heo, Nam-Chun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.539-546
    • /
    • 2004
  • An improved low coherence interferometer system and a new analysis method for the accurate measurement of the optical path difference error of an AWG (Arrayed-Waveguide Grating) are described. The use of software simplifies the experimental setup by eliminating the hardware (clock generator). In addition, the actual distances between the peak positions of the adjacent interference signals are calculated using interpolation methods. The wavelength transmission characteristics of the AWG are calculated assuming the measured phase errors. The calculated AWG characteristic is quite similar to the actual measurement result, confirming accuracy of the proposed measurement setup.

Effect of Grating Structures and Mirror Positions on Characteristics of 1.55$\mu\textrm{m}$ DFB Lasers (1.55 $\mu\textrm{m}$ DFB 레이저의 특성에 미치는 Grating구조와 Mirror 위치의 영향)

  • Kwon, Kee-Young
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.128-138
    • /
    • 1994
  • In 1.55.mu.m DFB lasers with two non-AR mirrors, I have analyzed the effect of the sturctures of indes and/or gain gratings and mirror positions on the threshold gains, the lasing frequencies, and the beam profiles in longitudinal direction of lasers. I have obtained the optimum condition of static characteristics that ${\Delta}{\Omega}$(the phase difference betweeen index grating and gain grating is 3${\pi}$/4, $({\kappa}L)_{i}$=4~6 in case of $({\kappa}L)_{i}$=0.9 and $({\kappa}L)_{i}$=3~5 in case of $({\kappa}L)_{i}$=0.7. The modal selectivity and intensity uniformity of this optimum condition are 2~2.5 times better than those of the gain-coupled DFB lasers ${\Delta}{\Omega}$=0). The gain-coupled DFB lasers${\Delta}{\Omega}$=0) have 10$^{10) times better modal selectivity and intensity uniformity than the loss-coupled DFB lasers(TEX>${\Delta}{\Omega}$=${\pi}$).

  • PDF

Design and Analysis of U-shaped Sampled Grating Distributed Bragg Reflector Lasers (U형 Sampled Grating DBR 레이저 다이오드의 설계 및 분석)

  • Kim, Kyoungrae;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.229-235
    • /
    • 2017
  • A widely tunable U-shaped SGDBR (Sampled Grating Distributed Bragg Reflector) laser diode is designed and analyzed by means of a time-domain simulation. The U-shaped SGDBR laser diode consists of SGDBR, active, phase, and TIR (Total Internal Reflection) mirror sections, so the coupling losses across the sections should be carefully considered. The tuning range of the designed U-shaped SGDBR laser is about 1525-1570 nm, which is confirmed by the simulation. The simulation results show that the loss in the TIR mirror region should be less than about 2 dB, and the refractive-index difference at the butt coupling between the passive and active regions should be less than 0.1, to provide the complete tuning range.

A Simulation Study on the Transfer Characteristics of the Talbot Pattern Through Scintillation Screens in the Grating Interferometer (격자 간섭계에서 탈봇 패턴의 섬광체 스크린 투과 시 전달 특성에 대한 시뮬레이션 연구)

  • Kim, Daeseung;Kim, Youngju;Lee, Seho;Lee, Seung Wook
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.67-75
    • /
    • 2019
  • Grating interferometry based imaging technology is a kind of radiation imaging system, which can acquire not only absorption image but also phase difference and dark field image using the Talbot pattern. However, because of the technological difficulties and high cost of fabricating the gratings that make up the system, much efforts are being made to look for ways to replace them. The is a preliminary study to see how the Talbot pattern transfer through various kinds of scintillators and if the optical grating can be a way to replace the conventional absorption gratings. The geometry of the interferometer, the scintillator model, and the scintillator thickness are the main inputs for our simulation. We have used the concept of modulation for quantitative analysis of the contrast ratio of the Talbot pattern. This research is expected to provide very useful information on the design of optical gratings, which is an alternative way to analyze the Talbot pattern, which we have filed a patent on.

Evaluation of Machine Learning Methods to Reduce Stripe Artifacts in the Phase Contrast Image due to Line-Integration Process (선적분에 의한 위상차 영상의 줄무늬 아티팩트 감소를 위한 기계학습법에 대한 평가)

  • Kim, Myungkeun;Oh, Ohsung;Lee, Seho;Lee, Seung Wook
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.937-946
    • /
    • 2020
  • The grating interferometer provides the differential phase contrast image of an phase object due to refraction of the wavefront by the object, and it needs to be converted to the phase contrast image. The line-integration process to obtain the phase contrast image from a differential phase contrast image accumulates noise and generate stripe artifacts. The stripe artifacts have noise and distortion increases to the integration direction in the line-integrated phase contrast image. In this study, we have configured and compared several machine learning methods to reduce the artifacts. The machine learning methods have been applied to simulated numerical phantoms as well as experimental data from the X-ray and neutron grating interferometer for comparison. As a result, the combination of the wavelet preprocessing and machine learning method (WCNN) has shown to be the most effective.