• Title/Summary/Keyword: Grass filter strips

Search Result 4, Processing Time 0.017 seconds

EFFECT OF GRASS FILTER STRIPS ON REDUCING $PO_4$-P LOSS IN RUNOFF FROM FORAGE CROPLAND

  • Jung, M.W.;Jo, N.C.;Yoon, S.H.;Kim, W.H.;Kim, K.Y.;Sung, S.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.169-173
    • /
    • 2011
  • The performance of grass filter strips (GFS) in abating $PO_4$-P concentrations from the forage cropland was tested in an experiment on the 10% slope in Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA) from October 2007 to September 2009. Forage croplands with rye-corn double cropping system applied with chemical fertilizer and livestock manure (LM) were compared in a natural condition. The plots were hydrologically isolated Main plots consisted of the length of GFS, such as 0m, 5m, 10m and 15m. Sub plots consisted of the type of LM, such as chemical fertilizer (CF), composted cattle manure (CCM) and composted swine manure (CSM). Concentrations of PO4-P in surface runoff water were reduced as the length of GFS increased. Especially, GFS with 10m and 15m reduced $PO_4$-P concentrations significantly compared to that with 0m and 5m (p<0.05). The results from this study suggest that GFS improved the removal and trapping $PO_4$-P from forage croplands.

Effect of Grass Filter Strips on NO3-N in Runoff from Forage Cropland (사료작물 재배지에서 초지식생대를 이용한 NO3-N 저감효과에 관한 연구)

  • Jo, Nam-Chul;Kim, Won-Ho;Seo, Sung;Yoon, Sei-Hyung;Lee, Ki-Won;Choi, Ki-Choon;Jung, Min-Woong
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • The performance of grass filter strips (GFS) in abating $NO_3$-N concentrations from the forage cropland was tested in an experiment on the 10% slope in Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA) from October 2007 to September 2009. Forage croplands with rye-corn double cropping system applied with chemical fertilizer and livestock manure (LM) were compared in a natural condition. The plots were hydrologically isolated in a randomized block layout of 3 treatments $\times$ 2 factors $\times$ 3 replicates. Main plots consisted of the length of GFS, such as 0 m, 5 m, 10m and 15m. Sub plots consisted of the type of LM, such as chemical fertilizer (CF), cattle manure (CM) and swine manure (SM). Dry matter yields of rye and corn increased significantly in order of CF > CM > SM (p<0.05). Concentrations of $NO_3$-N in surface runoff water were reduced as the length of GFS increased. Especially, GFS with 10 m and 15m reduced $NO_3$-N concentrations significantly compared to that with 0 m and 5 m (p<0.05). The results from this study suggest that GFS improved the removal and trapping of manure nutrients from forage croplands.

Effect of Grass Filter Strips on PO4-P and Soil Loss in Runoff from Forage Cropland (사료작물 재배지에서 초지식생대가 PO4-P 및 토양유실 저감에 미치는 영향)

  • Jo, Nam-Chul;Yoon, Sei-Hyung;Kim, Ki-Young;Lee, Ki-Won;Kim, Meng-Jung;Yook, Wan-Bang;Jung, Min-Woong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.4
    • /
    • pp.309-316
    • /
    • 2010
  • The performance of grass filter strips (GFS) in reducing $PO_4$-P concentrations and soil loss from the forage cropland was tested in an experiment on the 10% slope in Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA) from October 2007 to September 2009. Forage cropland with rye-corn double cropping system receiving inorganic fertilizer or livestock manure (LM) were compared in a natural condition. The plots were hydrologically isolated in a randomized block layout of 3 treatments $\times$ 2 factors $\times$ 3 replicates. Main plots consisted of the length of GFS, such as $25\;m^2$ ($5{\times}5\;m$), $50m^2$ ($5{\times}10\;m$), $75m^2$ ($5{\times}15\;m$). Sub plots consisted of the type of LM, such as chemical fertilizer (CF), cattle manure (CM) and swine manure (SM). Concentrations of $PO_4$-P in surface runoff water were reduced as the length of GFS increased. Especially, GFS with 10 m and 15 m reduced $PO_4$-P concentrations significantly compared to that with 0 m (p<0.05). However, there was not significant different between $PO_4$-P concentrations of GFS with 10m and that of GFS with 15 m. Moreover, Soil loss in surface runoff water were reduced as the length of GFS increased. GFS with 15 m reduced soil loss significantly compared to that with 5 m and 10 m (p<0.05). The results from this study suggest GFS improve the removal and trapping $PO_4$-P and soil loss from forage cropland.

Selection of Appropiate Plant Species of VFS (Vegetative Filter Strip) for Reducing NPS Pollution of Uplands (밭 비점오염저감을 위한 초생대 적정 초종 선정)

  • Choi, Kyung-Sook;Jang, Jeong-Ryeol
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.973-983
    • /
    • 2014
  • This study focused on the selection of appropriate plant species of VFS (vegetative fiter strips) and the assessment of VFS effects for reducing NPS (non-point source) pollution from uplands. The experimental field was constructed with 1 control and 6 treated plots in the upland area of $1,500m^2$ with 5% slope which is located in Gunwi-gun, Gyeongbuk province. Six vegetation including Chufa, Common crabgrass, Barnyard grass, Turf grass, Tall fescue, Kenturky bluegrass, were applied to install VFS systems during the study period from June 2011 to Dec. 2012. The results of this study showed that 6.1~77.8% in runoff and 15.6~90.3% in TS, 49.9~96.6% in T-P, and 6.7~91.1% in T-N were reduced from the VFS treated plots. Generally high reduction effects were observed from TS, T-P, T-N, and SS, while BOD, TOC, and $NO_3^-$ showed low reductions. The best vegetation type was Turf grass showing higher reduction effects of NPS pollutions and having relatively easier maintenance efforts compared to other vegetations selected in this study. Based on these results, VFS technique found to be an effective management practice for reducing agricultural NPS pollutions in Korean upland conditions. Further study needs to be performed through various field experiments with long term monitoring in order to develop a design manual of VFS system for practical applications.