• 제목/요약/키워드: Grass Silage

검색결과 134건 처리시간 0.03초

Silage의 품질과 호상적 변패에 대한 proponic acid 와 예건의 효과 I. Silage의 품질에 미치는 영향 (Quality and Aerobic Deterioration of Italian Ryegrass Silage Prepared with Propionic Acid and Wilting I. Fermentation chracteristics of the silage)

  • 고영두;김두환;송영민
    • 한국초지조사료학회지
    • /
    • 제11권1호
    • /
    • pp.53-59
    • /
    • 1991
  • This experiment was conducted to investigate the effects of propionic acid and wilting on fermentation quality of Italian ryegrass silage. Grass material was wilted for a day before ensiling and propionic acid(0. 0, 0. 2. 0. 5 and 0.8 7~ of fresh matter) was applicated at ensiling time. Chemical composition, fermentation acids, pH, microbial population and distribution of the nitrogen contents were evaluated. The results obtained are summarized as follows: 1. The contents of dry matter and water soluble carbohydrate in the silage were increased by wilting, and crude fibre, NDF and ADF were decreased with increasing propionic acid levels. 2. The pH values of the silage increased by increasing DM content, but decreased with increasing propionic acid levels. Lactic acid content lowed in wilted silage, and acetic acid and butyric acid formation were decreased with increasing propionic acid levels. 3. Total nitrogen content in the silage was i n ~ r e a s e d ( ~ < . 05) by addition of propionic acid and wilting, and was the highest in the prewilting-0.8 Q propionic acid applicated silage. The production of NHBN was decreased with propionic acid and was the lowest in the 0.8 % treated silage. 4. The number of total bacteria and yeasts were estimated $10^6~10^7$, $10^2~10^3$ respectively. Moulds number were decreased with increasing propionic acid levels.

  • PDF

Effects of the Pattern of Energy Supply on the Efficiency of Nitrogen Utilization for Microbial Protein Synthesis in the Non-Lactating Cows Consuming Grass Silage

  • Kim, K.H.;Lee, S.S.;Jeon, B.T.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권7호
    • /
    • pp.962-966
    • /
    • 2000
  • Effects of the pattern of energy supply on the efficiency of nitrogen utilization for microbial protein synthesis (MPS) were examined in cows consuming grass silage (7.1 kg DM/d) and supplement of 1 kg sucrose per day given as an intraruminal infusion. Three non-lactating cows received three experimental treatments in a $3{\times}3$ Latin square design with each period lasting 14 days. The treatments were (1) the basal diets of silage alone given in one meal each day at 09:30 h (BASAL), supplemented with (2) 1.0 kg sucrose given a 4-h infusion starting at 09:30 h (SYNC), (3) 1.0 kg sucrose given a continuous infusion for 24 h (CONT). Compared with BASAL, sucrose infusions altered (p<0.05) the pattern of variation in ruminal pH and the concentration of ammonia at 4 h after feeding but none of the sucrose treatments resulted in any changes in the ruminal concentration of VFA. All sucrose treatments increased (p<0.05) MPS relative to BASAL by 14% and 33% for SYNC and CONT, respectively, and that for CONT was greater (p<0.05) than for SYNC. It is concluded that synchronization of energy and nitrogen over the shorter term has no further advantage of the efficiency for MPS relative to CONT.

Improvement of Fermentation and Nutritive Quality of Straw-grass Silage by Inclusion of Wet Hulless-barley Distillers' Grains in Tibet

  • Yuan, Xianjun;Yu, Chengqun;Shimojo, M.;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권4호
    • /
    • pp.479-485
    • /
    • 2012
  • In order to develop methods that would enlarge the feed resources in Tibet, mixtures of hulless-barley straw and tall fescue were ensiled with four levels (0, 10%, 20%, and 30% of fresh weight) of wet hulless-barley distillers' grains (WHDG). The silos were opened after 7, 14 or 30 d of ensiling, and the fermentation characteristics and nutritive quality of the silages were analyzed. WHDG addition significantly improved fermentation quality, as indicated by the faster decline of pH, rapid accumulation of lactic acid (LA) (p<0.05), and lower butyric acid content and ammonia-N/total N (p<0.05) as compared with the control. These results indicated that WHDG additions not only effectively inhibited the activity of aerobic bacteria, but also resulted in faster and greatly enhanced LA production and pH value decline, which restricted activity of undesirable bacteria, resulting in more residual water soluble carbohydrates (WSC) in the silages. The protein content of WHDG-containing silages were significantly higher (p<0.05) higher than that of the control. In conclusion, the addition of WHDG increased the fermentation and nutritive quality of straw-grass silage, and this effect was more marked when the inclusion rate of WHDG was greater than 20%.

Fermentation Characteristics and Microbial Diversity of Tropical Grass-legumes Silages

  • Ridwan, Roni;Rusmana, Iman;Widyastuti, Yantyati;Wiryawan, Komang G.;Prasetya, Bambang;Sakamoto, Mitsuo;Ohkuma, Moriya
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권4호
    • /
    • pp.511-518
    • /
    • 2015
  • Calliandra calothyrsus preserved in silage is an alternative method for improving the crude protein content of feeds for sustainable ruminant production. The aim of this research was to evaluate the quality of silage which contained different levels of C. calothyrsus by examining the fermentation characteristics and microbial diversity. Silage was made in a completely randomized design consisting of five treatments with three replications i.e.: R0, Pennisetum purpureum 100%; R1, P. purpureum 75%+C. calothyrsus 25%;, R2, P. purpureum 50%+C. calothyrsus 50%; R3, P. purpureum 25%+C. calothyrsus 75%; and R4, C. calothyrsus 100%. All silages were prepared using plastic jar silos (600 g) and incubated at room temperature for 30 days. Silages were analyzed for fermentation characteristics and microbial diversity. Increased levels of C. calothyrsus in silage had a significant effect (p<0.01) on the fermentation characteristics. The microbial diversity index decreased and activity was inhibited with increasing levels of C. calothyrsus. The microbial community indicated that there was a population of Lactobacillus plantarum, L. casei, L. brevis, Lactococcus lactis, Chryseobacterium sp., and uncultured bacteria. The result confirmed that silage with a combination of grass and C. calothyrsus had good fermentation characteristics and microbial communities were dominated by L. plantarum.

조사료원 종류가 거세 염소(Capra hircus)의 영양소 소화율 및 온실가스 발생량에 미치는 영향 (Nutrient Digestibility and Greenhouse Gas Emission in Castrated Goats (Capra hircus) Fed Various Roughage Sources)

  • 나영준;황석진;최용준;박기태;이상락
    • 한국초지조사료학회지
    • /
    • 제38권1호
    • /
    • pp.39-43
    • /
    • 2018
  • The objective of this study was to determine the effect of various roughage sources on nutrient digestibility and enteric methane ($CH_4$), and carbon dioxide ($CO_2$) production in goats. Four castrated black goats ($48.5{\pm}0.6kg$) were individually housed in environmentally controlled respiration-metabolism chambers. The experiment design was a $4{\times}4$ balanced Latin square design with 4 roughage types and 4 periods. Alfalfa, tall fescue, rice straw, and corn silage was used as representative of legume, grass, straw, and silage, respectively. Dry matter digestibility was higher (p < 0.001) in corn silage than in alfalfa hay. Dry matter digestibility of alfalfa hay was higher than those of tall fescue or rice straw (p < 0.001). Neutral detergent fiber digestibility of tall fescue was lower (p < 0.001) than those of alfalfa, rice straw, or corn silage. Daily enteric $CH_4$ production and the daily enteric $CH_4$ production per kilogram of $BW^{0.75}$, dry matter intake (DMI), organic matter intake (OMI), digested DMI, and digested OMI of rice straw did not differ from those of tall fescue but were higher (p < 0.001) than those of alfalfa or corn silage. Roughage type had no effect on enteric $CO_2$ emission in goats. Straw appeared to generate more enteric $CH_4$ production than legume or silage, but similar to grass.

Chemical Composition, In situ Digestion Kinetics and Feeding Value of Oat Grass (Avena sativa) Ensiled with Molasses for Nili-Ravi Buffaloes

  • Khan, Muhammad Ajmal;Sarwar, M.;Nisa, M.;Iqbal, Z.;Khan, M.S.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권8호
    • /
    • pp.1127-1133
    • /
    • 2006
  • This study examined the effect of cane molasses and fermentation time on chemical composition and characteristics of oat grass silage (OGS) and its in situ digestion kinetics, intake, digestibility, milk yield and composition in buffaloes (Bubalus bubalis). Oat grass (OG) harvested at 50-days of age was ensiled in laboratory silos with cane molasses at the rate of 0, 2, 4 and 6% of OG dry matter (DM) for 30, 35 and 40 days. Silage pH was decreased while lactic acid content increased with increasing level of cane molasses and fermentation time. Dry matter (DM), crude protein (CP) and true protein (TP) content of OGS were (p<0.05) significantly higher with higher cane molasses levels. However, they were not affected by the fermentation time. Similar trends were observed for neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose, acid detergent lignin and ash content of OGS. The OG ensiled for 30-days with 2% molasses was screened from laboratory study and used to determine comparative in situ DM and NDF digestion kinetics of OG and its silage. In situ DM and NDF digestibilities of OG were significantly (p<0.05) higher than OGS. Ruminal DM and NDF lag time, rate and extent of digestion of OG and its silage were similar. Two experimental diets of OG and OGS were formulated using 75:25 forage to concentrate ratio on a DM basis. Dry matter and CP intakes were similar in lactating buffaloes fed either OG- or OGS-based diets. However, NDF intake was higher in buffaloes fed the OG-compared with OGS-based diet. Apparent DM, CP and NDF digestibilities were similar in lactating buffaloes fed either OG- or OGS-based diets. Milk yield (4% FCM) was similar in buffaloes fed either OG-(10.3 kg/d) or OGS-(9.95 kg/d) based diets. Milk fat, total solids and true protein content were higher with OG compared with the OGS diet. Solids not fat and CP content were similar in milk of buffalo fed either OG or OGS. The results of this study indicate that OG ensiled with 2% molasses could safely replace 75% DM of green oat fodder in the diets of lactating buffaloes without negatively affecting intake, digestibility, milk yield and composition.

주요사료작물의 곤포 Silage 조제이용에 관한 연구 III. 작물별 곤포 silage의 일반 성분과 에너지함량 평가 (Study on Baled Silage Making of Selected Forage Crop and Pesture Grasses III. Evaluation of chemical components and energy contents of baled silage with selected forage)

  • 김정갑;한민수;김건엽;한정대;진현주;신정남
    • 한국초지조사료학회지
    • /
    • 제16권1호
    • /
    • pp.87-92
    • /
    • 1996
  • The quality of silages, made from whole crop barley, rye, spring oat, Italian ryeglass, orchardgrass, alfalfa and grass-legume pasture mixtures, were evaluated under two different conservation techniques in baled silage making (BS) and conventional silages(CS). Crops materials were harvested at the stage of the greatest dry matter accumulation(hard dough for barley, soft dough for rye and oat, late bloom for Italian ryegrass and others pasture species), and baled in a self constructed square baling chamber weighted by 25~30kg in dry matter basis. Each bales were wrapped with 0.05mm thick polyethylen plastic film and stored six months long in stack silos. Barley, rye, oat and Italian ryegrass including of pasture crops produced higher quality silages in the baled silage making, due to better organic acid fermentation and lower nutrient losses during the period of storage than those in the conventional silages. TDN contents of barley silages were 65.3% in BS and 63.7% in CS, NEL value of barley silages was improved hum 6.48MJ(CS) to 6.61MJ/kg(BS) in dry matter basis. Silage quality of rye, oat and pasture crops were also improved markedly in the baled silage utilization.

  • PDF

Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures

  • Li, Dongxia;Ni, Kuikui;Zhang, Yingchao;Lin, Yanli;Yang, Fuyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.665-674
    • /
    • 2019
  • Objective: In tropical regions, as in temperate regions where seasonality of forage production occurs, well-preserved forage is necessary for animal production during periods of forage shortage. However, the unique climate conditions (hot and humid) and forage characteristics (high moisture content and low soluble carbohydrate) in the tropics make forage preservation more difficult. The current study used natural ensiling of tropical forage as a model to evaluate silage characteristics under different temperatures ($28^{\circ}C$ and $40^{\circ}C$). Methods: Four tropical forages (king grass, paspalum, white popinac, and stylo) were ensiled under different temperatures ($28^{\circ}C$ and $40^{\circ}C$). After ensiling for 30 and 60 days, samples were collected to examine the fermentation quality, chemical composition and microbial community. Results: High concentrations of acetic acid (ranging from 7.8 to 38.5 g/kg dry matter [DM]) were detected in silages of king grass, paspalum and stylo with relatively low DM (ranging from 23.9% to 30.8% fresh material [FM]) content, acetic acid production was promoted with increased temperature and prolonged ensiling. Small concentrations of organic acid (ranging from 0.3 to 3.1 g/kg DM) were detected in silage of white popinac with high DM content (50.8% FM). The microbial diversity analysis indicated that Cyanobacteria originally dominated the bacterial community for these four tropical forages and was replaced by Lactobacillus and Enterobacter after ensiling. Conclusion: The results suggested that forage silages under tropical climate conditions showed enhanced acetate fermentation, while high DM materials showed limited fermentation. Lactobacillus and Enterobacter were the most probable genera responsible for tropical silage fermentation.