• Title/Summary/Keyword: Graphitization degree

Search Result 20, Processing Time 0.026 seconds

Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells (염료감응형 태양전지의 비백금 상대전극을 위한 Co가 내재된 Graphitic 다공성 탄소나노섬유)

  • An, Hye Lan;Kang, Hye-Rhin;Sun, Hyo Jeong;Han, Ji Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.672-677
    • /
    • 2015
  • Co-embedded graphitic porous carbon nanofibers(Co-GPCNFs) are synthesized by using an electrospinning method. Their morphological, structural, electrochemical, and photovoltaic properties are investigated. To obtain the optimum condition of Co-GPCNFs for dye-sensitized solar cells(DSSCs), the amount of cobalt precursor in an electrospinning solutuion are controlled to be 0 wt%(conventional CNFs), 1 wt%(sample A), and 3 wt%(sample B). Among them, sample B exhibited a high degree of graphitization and porous structure compared to conventional CNFs and sample A, which result in the performance improvement of DSSCs. Therefore, sample B showed a high current density(JSC, $12.88mA/cm^2$) and excellent power conversion efficiency(PCE, 5.33 %) than those of conventional CNFs($12.00mA/cm^2$, 3.78 %). This result can be explained by combined effects of the increased contact area between the electrode and elecytolyte caused by improved porosity and the increased conductivity caused by the formation of a high degree of graphitization. Thus, the Co-GPCNFs may be used as a promising alternative of Pt-free counter electrode in DSSCs.

Pressure Effects on the Morphology Development of C/C Composites During Carbonization

  • Joo, Hyeok-Jong;Ryu, Seung-Hee;Ha, Hun-Seung
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.158-164
    • /
    • 2001
  • It is well known that the fabrication process of carbon/carbon composites is very complex. Above all, the carbonization process have major effect on the morphology development of carbon matrix. Carbon/carbon composites of 4-directional fiber preform were fabricated using the coal tar based pitch as a matrix precursor in this study. According to carbonization pressure of 1 bar, 100 bar, 600 bar, and 900 bar, morphological changes of cokes and matrix of composites were discussed. As the carbonization pressure increased to 600 bar, the flow pattern morphology of bulk mesophse was well developed. On the contrary, mosaic pattern morphology was found in case of 900 bar of carbonization pressure. It is confirmed that the carbonization pressure have profound effect on the degree of graphitization and crystal size of carbon matrix. Even in the highly densified carbon/carbon composites, large voids were still found in the matrix pocket region.

  • PDF

Densification of 4D Carbon Fiber Performs with Mesophase Pitch as Matrix-Precursor

  • Joo, Hyeok-Jong;Lee, Jae-Won
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, AR (aromatic resin) pitch was employed as the matrix-precursor for carbon/carbon composite because it exhibits much higher coke yield than coal tar pitch. As a result, a fabrication process of carbon/carbon composites can be shortened. It has been known that the pitches may cause swolling problem during the carbonization process. In order to restrain the swelling occurrence, a small quantity of carbon black was added to the AR pitch. Due to addition of carbon black the swelling was decreased largely and the perform can be infiltrated with the AR pitch. The densification efficiency of the performs was compared with various matrix-precursors. The coke yield of matrixprecursors, the morphology and the degree of graphitization of carbon matrix were analyzed.

  • PDF

Mineralogical Study on High Aluminous meta-Claystone form the Chununsan Formation (천운산층내 고알루미나광석에 대한 광물학적 연구)

  • 이동진;이성록
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.48-62
    • /
    • 1988
  • The high aluminous meta-claystones are thinly bedded to metasedimentary rocks which belong to Chununsan Formation. Major high aluminous minerals in the ores ae andalusite, kaolinite and pyrophyllite. The other significant constituents are sericite, chloritoid and carbonaceous material, etc. Ores can be classified into 4 types according to mineral compositions; andalusite- kolinite-sericite, andalusite-kaolinite-chloritoid, kaolinite-sericite-pyrophyllite, and kaolinite-chloritoid-sericite ore. The formation of ore minerals are resulted from sedimentary, diagenetic, metamorphic and hydrothermal processes. Andalusite are formed by low-grade metamorphism under the conditions of $400~500^{\circ}C$ and below 4kb, from the view-point of mineral stability field, illite-mica crystallinity and graphitization degree of the carbonaceous material. Andalusites are partly altered to kaolinite, forming major mineral phase in the ores.

  • PDF

Improvement of the electrochemical properties of low temperature synthesized carbon for anode materials in lithium-ion batteries (리튬이온전지의 음극 재료로서 저온합성탄소의 전기화학적 특성의 향상)

  • 이헌영;장석원;신건철;이성만;이종기;이승주;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • The electrochemical properties of hard carbon anodes in lithium ion batteries were improved by carbon coating using polyvinyl chloride (PVC). The reduction in irreversible capacity occured and the reversible capacity increased. It is suggested that the PVC carbon coating modifies the surface of hard carbon and reduces the surface reaction with species from air. The degree of the graphitization of PVC carbon was controlled by an addition of Ni, and the effect of the amount of Ni addition on the electrochemical properties was discussed.

  • PDF

Anodic Properties of Needle Cokes-derived Graphitic Materials in Lithium Secondary Batteries (침상 코크스(needle cokes)로부터 제조된 흑연질 탄소재료의 리튬 2차전지 음극특성)

  • Park Chul Wan;Oh Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.221-226
    • /
    • 1999
  • Two needle cokes (NC-A and NC-B) that differ in both the texture and impurity content to each other were graphitized at $2000-3000{\circ}C$, and the average particle size, size distribution and surface area were compared after milling. Their anodic properties in Li secondary batteries were also analyzed. Two materials showed a higher degree of graphitization with an increase in the preparation temperature, however, the NC-B series was less graphitized than NC-A due to the presence of impurities and less ordered mosaic texture. The mein particle size of the milled powder was proportional to the degree of graphitization, but the surface area showed the opposite trend. The highly graphitized materials yielded powders of lower uniformity in the size distribution. The discharge capacity of the resulting carbons steadily decreased in the temperature range of 1000 to $2000^{\circ}C$ due to the depletion of carbonaceous interlayers that contain crystal defects. A later increase in the discharge capacity was observed at $>2000^{\circ}C$, which arises from the formation of graphitic interlayers. The milling process gave rise to a sloping discharge curve at >1.0 V, but this was converted to a plateau at <0.25V after a repeated cycling or additional heat-treatment at $1000^{\circ}C$. The discharge at >1.0V likely comes from the disordered surface structure formed during the milling process. The evolution of a plateau at <0.25 V suggests that this disordered structure transforms to a more ordered graphitic one upon a cell cycling or heat-treatment.

Ablative Properties of 4D Carbon/Carbon Composites by Combustion Test

  • Park, Jong-Min;Ahn, Chong-Jin;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.316-323
    • /
    • 2008
  • The factors that influence ablation resistance in fiber composites are properties of the reinforced fiber and matrix, plugging quantity of fiber, geometrical arrangement, crack, pore size, and their distributions. To examine ablation resistance according to distribution of crack and pore size that exist in carbon/carbon composites, this study produced various sizes of unit cells of preforms. They were densified using high pressure impregnation and carbonization process. Reinforced fiber is PAN based carbon fiber and composites were heat-treated up to $2800^{\circ}C$. The finally acquired density of carbon/carbon composites reached more than $1.932\;g/cm^3$. The ablation test was performed by a solid propellant rocket engine. The erosion rate of samples is below 0.0286 mm/s. In conclusion, in terms of ablation properties, the higher degree of graphitization is, the more fibers that are arranged vertically to the direction of combustion flame are, and the less interface between reinforced fiber bundle and matrix is, the better ablation resistance is shown.

Fabrication and Electrical Properties of Conductive Carbon Black filled Poly(Vinyliden Fluoride) Composite (도전성 카본블랙/PVdF 복합재의 제조 및 전기적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Park, Hong-Soo;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.212-220
    • /
    • 2003
  • Electrical properties of carbon filler/PVdF [poly(vinylidene fluoride)] composite were investigated as a funtion of carbon filler/PVdF ratio in the range of 0.2${\sim}$0.5. Three kinds of comercialzied conductive carbon blacks such as Hiblack 41Y, KE300J, and KE600J, and carbon nanofibers prepared by the catalytic chemical vapor deposition of $C_2H_4$ over Ni-Cu catalysts were used as the carbon fillers. The electrical conductivity of carbon filler/PVdF composites were in the range of 0.65 to 13.5 S/cm depending the fillers' electrical conductivity ranging from 5.6 to 23.1 S/cm. Among the carbon fillers used, the KE600J carbon black showed the highest conductivity both in the composite and filler itself because of its high degree of graphitization due to the high-temperature thermal treatment and its high surface area due to the activation treatment.

Physical Properties and Morphology of Carbon Nanotubes Prepared by Thermal and Plasma CVD of Acetylene (아세틸렌의 열 및 플라즈마 CVD법으로 제조한 탄소나노튜브의 물성과 구조적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.174-181
    • /
    • 2004
  • Multi-walled carbon nanotubes (CNTs) were prepared by thermal chemical vapor deposition (CVD) and microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts with four transition metals such as Fe, Co, Cu, and Ni. In the preparation of CNTs from acetylene precursor by thermal CVD, the CNTs with very high yield of 43.6 % was produced over $Fe-Co/Al_2O_3$. The highest yield of CNTs was obtained with the catalyst reduced for 3 hr and the yield was decreased with increasing reduction time to 5 hr, due to the formation of $FeAl_2O_4$ metal-aluminate. On the other hand, the CNTs prepared by acethylene plasma CVD had more straight, smaller diameter, and larger aspect ratio(L/D) than those prepared by thermal CVD, although their yield had lower value of 27.7%. The degree of graphitization of CNTs measured by $I_d/I_g$ value and thermal degradation temperature were 1.04 and $602^{\circ}C$, respectively.

Simple one-step synthesis of carbon nanoparticles from aliphatic alcohols and n-hexane by stable solution plasma process

  • Park, Choon-Sang;Kum, Dae Sub;Kim, Jong Cheol;Shin, Jun-Goo;Kim, Hyun-Jin;Jung, Eun Young;Kim, Dong Ha;Kim, Daseulbi;Bae, Gyu Tae;Kim, Jae Young;Shin, Bhum Jae;Tae, Heung-Sik
    • Carbon letters
    • /
    • v.28
    • /
    • pp.31-37
    • /
    • 2018
  • This paper examines a simple one-step and catalyst-free method for synthesizing carbon nanoparticles from aliphatic alcohols and n-hexane with linear molecule formations by using a stable solution plasma process with a bipolar pulse and an external resistor. When the external resistor is adopted, it is observed that the current spikes are dramatically decreased, which induced production of a more stable discharge. Six aliphatic linear alcohols (methanol-hexanol) containing carbon with oxygen sources are studied as possible precursors for the massive production of carbon nanoparticles. Additional study is also carried out with the use of n-hexane containing many carbons without an oxygen source in order to enhance the formation of carbon nanoparticles and to eliminate unwanted oxygen effects. The obtained carbon nanoparticles are characterized with field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results show that with increasing carbon ratios in alcohol content, the synthesis rate of carbon nanoparticles is increased, whereas the size of the carbon nanoparticles is decreased. Moreover, the degree of graphitization of the carbon nanoparticles synthesized from 1-hexanol and n-hexane with a high carbon (C)/oxygen (O) ratio and low or no oxygen is observed to be greater than that of the carbon nanoparticles synthesized from the corresponding materials with a low C/O ratio.