• Title/Summary/Keyword: Graphite cap

Search Result 5, Processing Time 0.02 seconds

Effect of High Temperature Annealing on the Characteristics of SiC Schottky Diodes (고온 열처리 공정이 탄화규소 쇼트키 다이오드 특성에 미치는 영향)

  • Cheong, Hui-Jong;Bahng, Wook;Kang, In-Ho;Kim, Sang-Cheol;Han, Hyun-Sook;Kim, Hyeong-Woo;Kim, Nam-Kyun;Lee, Yong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.818-824
    • /
    • 2006
  • The effects of high-temperature process required to fabricate the SiC devices on the surface morphology and the electrical characteristics were investigated for 4H-SiC Schottky diodes. The 4H-SiC diodes without a graphite cap layer as a protection layer showed catastrophic increase in an excess current at a forward bias and a leakage current at a reverse bias after high-temperature annealing process. Moreover it seemed to deviate from the conventional Schottky characteristics and to operate as an ohmic contact at the low bias regime. However, the 4H-SiC diodes with the graphite cap still exhibited their good electrical characteristics in spite of a slight increase in the leakage current. Therefore, we found that the graphite cap layer serves well as the protection layer of silicon carbide surface during high-temperature annealing. Based on a closer analysis on electric characteristics, a conductive surface transfiguration layer was suspected to form on the surface of diodes without the graphite cap layer during high-temperature annealing. After removing the surface transfiguration layer using ICP-RIE, Schottky diode without the graphite cap layer and having poor electrical characteristics showed a dramatic improvement in its characteristics including the ideality factor[${\eta}$] of 1.23, the schottky barrier height[${\Phi}$] of 1.39 eV, and the leakage current of $7.75\{times}10^{-8}\;A/cm^{2}$ at the reverse bias of -10 V.

An Introduction of an Apparatus for Rapid Heating Coal Gasification (Cahn Balance를 이용한 급속 가열방식의 석탄가스화 장치 소개)

  • Lee, Joong-Kee;Lee, Sung-Ho;Lim, Tae-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.393-398
    • /
    • 1991
  • An experimental reactor system was devised and employed to examine catalytic coal gasification. A 4-kw tungsten halogen lamp heater combinded with a graphite sample basket coated with silicon nitride film made rapid heating and cooling possible. Also a small graphite cap on the thermocouple tip which located just beneath the sample basket helped remarkably to read real temperatures. Silicon nitride film on the basket and the cap showed very good protection against the reaction between graphite and oxidant gases during the experiments. The weight of specimen could be continuously measured without disturbance.

  • PDF

Structural Analysis on the Heavy Duty Diesel Engine with Compacted Graphite Iron (CGI를 이용한 대형 디젤엔진의 구조해석)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.602-607
    • /
    • 2007
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. The compacted graphite iron (CGI) is a material currently under study for the engine demanded for high torque, durability, stiffness and fatigue. In this study, three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis by using property of CGI. The FE model of the heavy duty diesel engine section consisting with four half cylinder was selected. The heavy duty diesel engine section include cylinder block, cylinder head, liner, bearing cap, bearing and bolt. The loading conditions of engine are pre-fit load, assembly force and gas force.

  • PDF

Silyl-group functionalized organic additive for high voltage Ni-rich cathode material

  • Jang, Seol Heui;Jung, Kwangeun;Yim, Taeeun
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1345-1351
    • /
    • 2018
  • To allow stable cycling of layered nickel-rich cathode material at high voltage, silyl-functionalized dimethoxydimethylsilane is proposed as a multi-functional additive. In contrast to typical functional additive, dimethoxydimethylsilane does not make artificial cathode-electrolyte interfaces by electrochemical oxidation because it is quite stable under anodic polarization. We find that dimethoxydimethylsilane mainly focuses on scavenging nucleophilic fluoride species that can be produced by electrolyte decomposition during cycling, leading to improving interfacial stability of both nickel-rich cathode and graphite anode. As a result, the cell cycled with dimethoxydimethylsilane-controlled electrolyte exhibits 65.7% of retention after 100 cycle, which is identified by systematic spectroscopic analyses for the cycled cell.

Electrical characteristics of SiC schottky diodes treated by the various dry etch methods for a damaged surface (변형막 식각 방법에 따른 탄화규소 쇼트키 다이오드의 전기적 특성)

  • Choi, Young-Min;Kang, In-Ho;Bahng, Wook;Joo, Sung-Jae;Kim, Sang-Cheol;Kim, Nam-Kyun;Kim, Sung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.232-233
    • /
    • 2008
  • The 4H-SiC schottky diodes treated by the various dry etch methods were fabricated and electrically characterized. The post etch process including an Inductively Coupled Plasma(ICP) etch and a Neutron Beam Etch(NBE) was performed after a high-temperature activation annealing without graphite cap in order to eliminate the damaged surface generated during the activation annealing. The reverse leakage current of diode treated by ICP was 1/35 times lower than that of the diode without any post etch at the anode bias of -100V, while the reverse leakage current of diode treated by NBE was 1/44 times lower at the same bias.

  • PDF