• Title/Summary/Keyword: Graphite Furnace Atomic Absorption Spectrophotometry

Search Result 11, Processing Time 0.019 seconds

Determination of Trace Elements in Urine Samples by Graphite Furnace Atomic Absorption Spectrophotometry (흑연로 원자흡수분광광도법에 의한 뇨시료 중 흔적량 원소의 정량)

  • Choi, Chong-Moon;Choi, Hee-Seon;Park, Chang Joon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.555-561
    • /
    • 1994
  • A method was described for the graphite furnace atomic absorption spectrophotometric determination of trace cadmium, copper, chromium and lead in urine samples. The elements were directly determined without any other treatments. The ash temperature was intensively optimized to improve the large background by the removal of organic materials and alkali and alkali earth metals in urine samples. Two kinds of standard solutions were used to plot calibration curves. From the recovery data, it could be confirmed that the analytical results with the synthetic urine matrix similar to real urine were more accurate than with a deionized water matrix.

  • PDF

Graphite Furnace Atomic Absorption Spectrophotometric Determination of Trace Horseradish Peroxidase Using Nanosilver

  • Jiang, Zhi-Liang;Tang, Ya-Fang;Wei, Lin;Liang, Ai-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2732-2736
    • /
    • 2011
  • In pH 4.2 HAc-NaAc buffer solution, horseradish peroxidase (HRP) catalyzed $H_2O_2$ oxidation of nanosilver to form $Ag^+$. After centrifugation, $Ag^+$ in the supernatant can be measured by graphite furnace atomic absorption spectrophotometry (GFAAS) at the silver absorption wavelength of 328.1 nm. When HRP concentration increased, the $Ag^+$ concentration in the supernatant increased, and the absorption value enhanced. The HRP concentration in the range of 0.84-50 $ng{\cdot}mL^{-1}$ was linear to the enhanced absorption value (${\Delta}A$), with a regression equation of ${\Delta}A$=0.012C+0.11, correlation coefficient of 0.9988, and detection limit of 0.41 $ng{\cdot}mL^{-1}$ HRP. The proposed GFAAS method was used to detect HRP in waste water samples, with satisfactory results.

Matrix Modification for Graphite Furnace Atomic Absorption Spectrophotometric Determination of Volatile Elements(III) Trace Bismuth

  • Kim, Young-Sang;Choi, Jong-Moon;Kim, Young-Man
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.435-442
    • /
    • 1995
  • A matrix modification was studied for the determination of trace bismuth in water samples by graphite furnace atomic absorption spectrophotometry. The type and quantity of modifiers as well as the use of auxiliary modifiers were investigated to realize the efficient modification. Palladium was chosen as a single modifier. By the addition of palladium($5{\mu}g/mL$) to 100 ng/mL bismuth solution, the temperatures could be raised from $500^{\circ}C$ to $1,300^{\circ}C$ for the charring and from $2,000^{\circ}C$ to $2,200^{\circ}C$ for the atomization as well as the sensitivity and reproducibility were improved. The absorbance of bismuth was maximum and not changed in the range of Pd $3-25{\mu}g/mL$. And several materials were examined as an auxiliary modifier. The mixed solution of $1{\mu}g/mL$ palladium and $200{\mu}g/mL$ nickel have raised the temperatures as with $5{\mu}g/mL$ palladium only. The maximum absorbance of bismuth was shown in the nickel concentration range of $100-300{\mu}g/mL$ in $1{\mu}g/mL$ palladium modified system. With such optimum conditions, the trace amount of bismuth in several water samples could be determined by a calibration curve method, and good recoveries were also obtained.

  • PDF

Organic Precipitate Flotation of Trace Metallic Elements with Ammonium Pyrrolidinedithiocarbamate (II). Application of Solvent Sublation for Determination of Trace Cd, Co, Cu and Ni in Water Samples

  • 김영상;정용준;최희선
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • A solvent sublation was studied for the determination of trace Cd, Co, Cu and Ni in water samples. Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. Experimental conditions such as pH of solution, amounts of APDC, the type and amount of surfactant, the type of solvent, etc. were optimized for the effective sublation of analytes. After metal-PDC complexes were formed in sample solutions of pH 2.5, the precipitate-type complexes were floated in a flotation cell with an aid of sodium lauryl sulfate as a surfactant and by bubbling with nitrogen gas. The precipitates were dissolved and separated into the surface layer of methyl iso-butyl ketone (MIBK). The analytes preconcentrated were determined by a graphite furnace atomic absorption spectrophotometry (GF-AAS). Extractability of each element was 88% for Cd(Ⅱ), 86% for Co(Ⅱ), 95% for Cu(Ⅱ) and 76% for Ni(Ⅱ), respectively. And this procedure was applied to the analysis of real samples. From the recoveries of more than 92%, it was concluded that this method could be simple and applicable for the determination of trace elements in various water samples of a large volume.

A Comparative Analysis of Whole Blood Cadmium by Atomic Absorption Spectrophotometry with a Graphite Furnace (흑연로 원자흡수분광법에 의한 혈액중 카드뮴 정량분석)

  • Park, Jong An;Oh, Hye Jeong;Lee, Jong Hwa
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.301-312
    • /
    • 1996
  • This study was performed to search a optimal analyzing method of cadmium in whole-blood. Cadmium was determined by graphite furnace atomic absorption spectrometry(GFAAS). We investigated the effect of ashing temperature on the absorbance of cadmium in a simple dilution(ten-fold) method with triton X-100 and matrix modifier methods treated with $NH_4H_2PO_4$(1 and 3%) and $Pd(NO_3)_2$(0.00l and 0.005%) as matrix modifier. We also compared the reported reference values of standard blood with values resulted from optimal analyzing conditions of this study. In case of a simple dilution method, when ashing temperature was set at $450^{\circ}C$, the absorbance of sample and background were $0.334{\pm}0.012$ and $1.382{\pm}0.245$, respectively. Background level was higher than the value(0.8) that can be corrected by $D_2$ background correction method. As ashing temperature was rised to $500^{\circ}C$, the absorbance of sample and background were $0.178{\pm}0.008$ and $0.711{\pm}0.223$ respectively. The higher ashing temperature($450^{\circ}C-650^{\circ}C$) was, the lower the absorbance of sample was. In case of a matrix modifier method with $NH_4H_2PO_4$(1 and 3%), when ashing temperature was rised from $500^{\circ}C$ to $650^{\circ}C$, the absorbance of sample slightly changed. The absorbances of sample at $600^{\circ}C$ were $0.230{\pm}0.017$ and $0.137{\pm}0.012$, respectively. These values were larger than that of simple dilution method. But the absorbance of background was higher than the level that can be corrected by $D_2$ method. In case of a matrix modifier method with $Pd(NO_3)_2$(0.001 and 0.005%), the absorbance of sample and background were higher than those of other methods and were stable and reproducible. When ashing temperature was over $550^{\circ}C$, the absorbance of sample was significantly decreased. In case of 0.005% $Pd(NO_3)_2$ carbon residue remained in graphite tube affected the absorbance of sample and background. From these results, We propose that in case of a simple dilution(ten-fold) method with triton X-100 ashing temperature must be maintained below $400^{\circ}C$. In order to diminish the absorbance of background, the alternative method is attenuation of injection volume or multiplication of dilution ratio. We recommend $Pd(NO_3)_2$ than $NH_4H_2PO_4$ as a matrix modifier. In case of a matrix modifier method with $Pd(NO_3)_2$ ashing temperature might be maintained below $550^{\circ}C$.

  • PDF

Solvent Sublation of Trace Noble Metals by Formation of Metal Complexes with 2-Mercaptobenzothiazole

  • Kim, Yeong Sang;Sin, Je Hyeok;Choe, Yun Seok;Lee, Won;Lee, Yong Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 2001
  • A solvent sublation has been studied for the determination of trace Au(III), Pt(IV) and Pd(II) in waste water with their complexes of 2-mercaptobenzothiazole (MBT). Experimental conditions such as the concentration of HCl, the amount of MBT as a ligand, the type and amount of surfactants, bubbling rate and time, and the type of organic solvent were optimized for the solvent sublation, i.e., 25.0 mL of 2.0 M HCl solution and 30mL of 0.4%(w/v) MBT ethanolic solution were added to a 1.0 L sample to form stable complexes. The addition of 4.0 mL of 1 ${\times}$$10^{-3}$ M CTAB (cetyltrimehtylammonium bromide) solution was needed for the effective flotation accomplished by bubbling nitrogen gas at the rate of 40.0 mL/min for 35 minutes. As a solvent, 20.0 mL of MIBK (methylisobuthylketone) was used to extract the floated complexes. The procedure was applied to three kinds of waste waters. Au(III) was determined as 0.68 ng/mL and 0.98 ng/mL respectively for final washed water of two plating industries in Banwol. Pd(II) and Pt(IV) were not detected in any of the three samples. The recovery, which was obtained with analyte-spiked samples, were 95-120%.

X-Ray Diffractometric Study on Modification Mechanism of Matrixes for Electrothermal AAS Determination of Volatile Lead and Bismuth

  • Kim, Yeong Sang;Choe, Jong Mun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.56-60
    • /
    • 2000
  • The mechanism of a matrix modification for the trace determination of volatile lead and bismuth by an electro-thermal atomic absorption spectrophotometry was studied by a X-ray diffractometry (XRD). For the investigation of structures, the ash products of the elements were produced by using a palladium as a matrix modifier with or without aluminum or nickel as an auxiliary modifier. The same charring conditions as in the analysis of samples were applied together with much concentrated solution of analytical elements and modifiers in a graphite furnace to get a large amount of the product for XRD. The XRD patterns showed PbPd3 for lead and BiPd3 for bismuth. These mean that the reaction procedures through the charring and atomization were changed from $Pb^{2+}$ ${\rightarrow}$ PbO ${\rightarrow}$$Pb^0$ to $Pb^{2+}$ ${\rightarrow}$ PbO ${\rightarrow}PbPd_3$ ${\rightarrow}$ Pb o for lead and from $Bi^{3+}$ ${\rightarrow}$ BiO ${\rightarrow}$ Bi o to $Bi^{3+}$ ${\rightarrow}$ BiO ${\rightarrow}$ $BiPd_3$ ${\rightarrow}$ $Bi^0$ for bismuth by the addition of modifiers. The volatile elements were stabilized by the formation of palladium alloys through a charring process. Charring temperatures were raised about 500 $^{\circ}C$ by the alloying and the atomization was also stabilized for the enhancement of sensitivities.

Microwave Digestion and Solid-Phase Extraction for Determination of Aluminum in Human Urine by Graphite Furnace Atomic Absorption Spectrometer (흑연로 원자흡수 분광법에 의한 사람 오줌 중 알루미늄의 정량을 위한 마이크로파 삭힘과 고체상 추출)

  • Kim, Young-Sang;Choi, Yoon-Seok
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.102-109
    • /
    • 2003
  • Microwave digestion and solid-state extraction were studied for determination of trace aluminum{Al(III)} in human urine samples. A mixed acid of nitric acid and hydrogen peroxide was added to urine samples, organic materials were destructed in a home microwave oven and dried in a drying oven. The dried residues were dissolved in a sulfuric acid solution. The solution was eluted through a XAD-4 resin column adsorbed with 8-hydroxyquinoline(Oxine, HQ). Al(III)-8-hydroxyquinolinate complex was formed in the column and eluted with 0.5 M nitric acid solution. The Al(III) eluted was determined by graphite atomic absorption spectrophotometry. Various experimental conditions of followings were investigated for the optimization : the type of acid to dissolve the residues, the amount of HQ adsorbed on the resin, the pH of sample solutions, the type and concentration of acid to elute the complex from column and so on. The contents of Al(III) in real samples were determinated by a calibration curve method. The recovery in standard spiked samples was 94~101% and the detection limit of this procedure was 0.05 ng/mL.

Comparison of Standard and Lend Limit Test of Various Institutes on Lead Limit of Synthetic and Natural Food Additives (합성 및 천연 식품첨가물의 납함량에 대한 여러 기관의 규격기준 및 납시험법 비교)

  • Shin Dong-Hwa;Kim Yong-Suk;Jeong Do-Yeong;Lee Young-Hwan;Bang Jeong-Ho;Om Ae-Son;Shin Jae-Wook;Lee Tal-Soo;Jang Young-Mi;Hong Ki-Hyoung;Park Sung-Kwan;Park Sung-Kug;Kwon Yong-Kwan
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.2
    • /
    • pp.82-91
    • /
    • 2006
  • Standard and lead limit test in general test method of Korea, Japan, Joint FAO/WHO Expert Committee of Food Additives (JECFA), USA, and EU on synthetic and natural food additives were compared. There were found that the general test methods in 'Korea Food Additives Code' were different from standards of various institutes on lead limit test. For the lead limit test of food additives, Korea used dithizone method, Japan used atomic absorption spectrophotometry, and USA used dithizone method, flame atomic absorption spectrophotometric method, atomic absorption spectrophotometric graphite furnace method, and APDC extraction method. In addition, JECFA and EU used dithizone method and atomic absorption spectrophotometric method. The dithizone methods of Korea, USA, and JECFA were nearly identical. In the case of USA, JECFA, and EU, the analytical methods for lead limit test were shown in individual monograph. Lead limit test against 13 synthetic, such as magnesium stearate and L-cystine, and 12 natural, such as gua gum and diatomaceous earth, food additives distributed in Korea were performed by the analytical method of each institute. Although all institutes use various methods for analysis of lead, contents of lead in food additives tested fell into the standard of each institute.

Organic Precipitate Flotation of Trace Metallic Elements with Ammonium Pyrrolidinedithiocarbamate(Ⅰ). Determination of Bismuth, Cadmium, Cobalt and Lead in Water Samples by Coprecipitation-Flotation with Cu-pyrrolidinedithiocarbamate (Ammonium Pyrrolidinedithiocarbamate에 의한 극미량 금속원소의 유기침전 부선에 관한 연구(제1보) Cu-pyrrolidinedithiocarbamate 공침부선에 의한 물시료중 비스무트, 카드뮴, 코발트 및 납의 정량)

  • Jung, Yong June;Choi, Jong Moon;Choi, Hee Seon;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.12
    • /
    • pp.724-732
    • /
    • 1996
  • The organic precipitate flotation using Cu(II)-pyrrolidinedithiocarbamate complex as a coprecipitant was studied for the preconcentration and determination of trace Cd, Pb, Bi and Co in several water samples. Experimental conditions such as pH of solution, amounts of Cu(II) and ammonium pyrrolidinedithiocarbamate(APDC), stirring time, the type and amount of surfactant, etc. were optimized for the effective flotation of analytes. After 3.0 mL of 1,000 ${\mu}g/mL$ Cu(II) solution was added to 1.00 L water sample, the pH of the solution was adjusted to 2.5 with HNO3 solution. Trace amounts of analytes were coprecipitated by adding 2.0% APDC solution. And the precipitates were flotated onto the surface of solution with the aid of nitrogen gas and sodium lauryl sulfate. The floats were collected from mother liquor, and filtered through the micropore glass filter by suction. The precipitates were dissolved with 4 mL conc. HNO3, and then diluted to 25.00 mL with deionized water. The analytes were determined by graphite furnace atomic absorption spectrophotometry. This flotation technique was applied to the analysis of some water samples, and the 90 to 120% of recoveries were obtained from the spiked samples, this procedure could be concluded to be simple and applicable for the trace element analysis in various kinds of water.

  • PDF