• Title/Summary/Keyword: Graphite/epoxy composite

Search Result 113, Processing Time 0.023 seconds

Manufacturing Functional Nano-Composites by Using Field-Aided Micro-Tailoring Manipulation (Field-Aided Micro-Tailoring에 의한 기능성 나노복합재 제조)

  • Cho, Hee-Keun;Rhee, Juhun;Sim, Eun-Sup
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.178-185
    • /
    • 2012
  • One of a unique technique in manipulating a multifunctional composite is demonstrated in this study. An electric field is applied to a liquid suspension in order to align the inclusions along with the direction electric field. This is called FAiMTa(Field Aided Micro Tailoring). It makes orthotropic polymer composites by arranging the micro and/or nano size particle inclusions in chain-line formation. Several kinds of particles such as $Al_2O_3$, graphite, CNT(Carbon Nano Tube), W(Tungsten) are tested to verify the effectiveness of the FAiMTa. The particles redistributed in an epoxy suspension and their coupons show that mechanical and thermal properties of orthotropic and random composites containing those particles depend on the trend of particles' alignment. The micro-images of the functional composite from FAiMTa have been captures and their physical properties demonstrate their wide-range and state-of-the-art application for advanced multifunctional composites.

Impact Monitoring in Composite Beam Using Stabilization Controlled FBG Sensor System (안정화된 FBG 센서를 이용한 복합적층보에서의 충격위치검출)

  • Bang Hyung-Joon;Park Sang-Oh;Hong Chang-Sun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Impact location monitoring is one of the major concerns of the smart health monitoring. For this application, multipoint ultrasonic sensors are to be employed. In this study, a multiplexed FBG sensor system with wide dynamic range was proposed and stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. For the intensity demodulation system of FBG sensors, Fabry-Perot tunable filter(FP-TF) with 23.8nm FSR(free spectral range) was used, which behaves as two separate filters between $1530 \~ 1560$ nm range. Two FBG sensors were attached on the bottom side of the graphite/epoxy composite beam specimen, and low velocity impact tests were performed to detect the one-dimensional impact locations. Impact locations were calculated by the arrival time differences of the impact longitudinal waves acquired by the two FBGs. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely and found the impact locations with the average error of 1.32mm.

  • PDF

Free vibration of cross-ply laminated plates based on higher-order shear deformation theory

  • Javed, Saira;Viswanathan, K.K.;Izyan, M.D. Nurul;Aziz, Z.A.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.473-484
    • /
    • 2018
  • Free vibration of cross-ply laminated plates using a higher-order shear deformation theory is studied. The arbitrary number of layers is oriented in symmetric and anti-symmetric manners. The plate kinematics are based on higher-order shear deformation theory (HSDT) and the vibrational behaviour of multi-layered plates are analysed under simply supported boundary conditions. The differential equations are obtained in terms of displacement and rotational functions by substituting the stress-strain relations and strain-displacement relations in the governing equations and separable method is adopted for these functions to get a set of ordinary differential equations in term of single variable, which are coupled. These displacement and rotational functions are approximated using cubic and quantic splines which results in to the system of algebraic equations with unknown spline coefficients. Incurring the boundary conditions with the algebraic equations, a generalized eigen value problem is obtained. This eigen value problem is solved numerically to find the eigen frequency parameter and associated eigenvectors which are the spline coefficients.The material properties of Kevlar-49/epoxy, Graphite/Epoxy and E-glass epoxy are used to show the parametric effects of the plates aspect ratio, side-to-thickness ratio, stacking sequence, number of lamina and ply orientations on the frequency parameter of the plate. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Crippling Analysis of Z-Section Composite Stringers (Z-단면 복합재 스트링거의 크리플링 해석)

  • 권진회
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.65-73
    • /
    • 1999
  • Crippling stress and failure behavior of Z-section graphite/epoxy composite laminated stringers are investigated by the nonlinear finite element method. Stringers are idealized using 9-node laminated shell element. The complete unloading model is introduced into the finite element method for the progressive failure analysis. A modified Riks method is used to trace the post-failure equilibrium path after local buckling. Finite element results are validated with previous experimental results. The results show that the most important parameter affecting the crippling stress of Z-section stringers is the flange width. In terms of stacking sequence. the highest cripping stress is found at the stringer with $[{\pm}45/0/90]s$ lamination.

  • PDF

Effect of Epoxy Mixed with Nafion Solution as an Anode Binder on the Performance of Microbial Fuel Cell (산화전극 결합제로서 나피온용액에 혼합된 에폭시가 미생물연료전지의 성능에 미치는 영향)

  • Song, Young-Chae;Kim, Dae-Seop;Woo, Jung-Hui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The composite anodes of exfoliated graphite (EG) and multiwall carbon nanotube (MWCNT) were fabricated by using the binders with different content of epoxy in Nafion solution. The influence of the epoxy content in the anode binder on the performance of microbial fuel cell (MFC) was examined in a batch reactor. With the increase in the epoxy content in the anode binder, increase in physical binding force was observed, but at the same time an increase in the internal resistance of MFC was also observed. This was due to the increase in activation and ohmic resistance. For the anode binder without epoxy, the maximum power density was $1,892mW/m^2$, but a decrease in maximum power density was observed with the increase in the epoxy content in the anode binder. With the epoxy content of 50% in the anode binder, a decrease in the maximum power density to $1,425mW/m^2$ was observed, which about 75.3% of the anode binder without epoxy is. However, the material consisting of the same amount of epoxy and Nafion solution is a good alternative for anode binder in terms of durability and economics of MFC.

Viscoelastic analysis of residual stresses in a unidirectional laminate

  • Lee, Sang Soon;Sohn, Yong Soo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.383-393
    • /
    • 1994
  • The residual stress distribution in a unidirectional graphite/epoxy laminate induced during the fabrication process is investigated at the microstress level within the scope of linear viscoelasticity. To estimate the residual stresses, the fabrication process is divided into polymerization phase and cool-down phase, and strength of materials approach is employed. Large residual stresses are not generated during polymerization phase because the relaxation modulus is relatively small due to the relaxation ability at this temperature level. The residual stresses increase remarkably during cool-down process. The magnitude of final residual stress is about 80% of the ultimate strength of the matrix material at room temperature. This suggests that the residual stress can have a significant effect on the performance of composite structure.

Papers : Simultaneous Monitoring of Strain and Temperature During and After Cure of Unsymmetric Cross - ply Composite Laminate Using Fiber Optic Sensors (논문 : 비대칭 직교적층 복합재료 적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 모니터링)

  • Gang,Hyeon-Gyu;Gang,Dong-Hun;Hong,Chang-Seon;Kim,Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • In this paper, we present the simulation monitoring of strain and temperature during and after the cure of unsymmetric composite laminate using fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors are used to measure those measurands. The characteristic matrix of the sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilised as a lighr source. Two FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate in different directions and different locations. We perform a real time monitoring of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in a thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

Development of Embedding Methods of Fiber Bragg Grating Sensor under Consideration of Strain Transfer (변형률 전달성을 고려한 광섬유 브래그 격자 센서의 삽입 적용 기법 개발)

  • 강동훈;강현규;김대현;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.32-37
    • /
    • 2001
  • It is known that recoating or protection with glass-tube can prevent FBG sensor from being affected by birefringence. However, the effect on the strain transfer of such treatment has not been verified yet. Three types (uncoated, recoated and glass-tube protection) of FBG sensors are fabricated to verify the effect on the strain transfer of each treatment. The strain from each sensor embedded into a graphite/epoxy composite specimen was compared with that of ESG attached on the surface through the tensile test. And the signal characteristics of each sensor were also compared using the tensile test of a tapered aluminum specimen which was under the state of strain gradient.

  • PDF

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.

The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load (축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성)

  • 양현수;김영남;최흥환
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.