• Title/Summary/Keyword: Graphic Program

Search Result 551, Processing Time 0.028 seconds

A Review of Graphical Interface Design Methods through Collaborative Teamwork (공동협력 관계를 통한 GUI디자인 방법적 고찰)

  • 황지연;서정운
    • Archives of design research
    • /
    • v.11 no.2
    • /
    • pp.191-200
    • /
    • 1998
  • In the "digitalized" world of new media, visual designer are increasingly enlarging their roles in desighing interaction products. However, the concepts and their methods of the interaction design have not been well established in the design community yet. The reason is attributed to the fact that designing interaction products requires two way communication between the products and final users. whereas traditional graphic design counts only on one way communication. This study emphasizes GUI design should aim at improving the usability of products which helps users quickly learn about the products and easily use them. The usability of GUI design significantly improved by securing logical rationality helps designers communicate and collaborate with program engineers and other product developers. To explain how designers can effectively communicate with program engineers and other product participants in the design process, a model of design collaboration is provided in this study. Based on the model, the study deals with the principles and methods of visual interaction, the formulation of specification system, testing design usability, and design evaluation. The study concludes that GUI designers must ensure logical rationality and the cognitive approach of visual language. Because it improves the usability of products. It also becomes an objective tool for communicating and collaborationg with engineers and the other participants in the design process.

  • PDF

BIOFIT - Smart, Portable, Wearable and Wireless Digital Exercise Trainer Device with Biofeedback Capability

  • Diwakar Praveen Kumar;Oh Young-Keun;Chung Gyo-Bum;Park Seung-Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.36-45
    • /
    • 2007
  • Today Human Personal Trainers are becoming very famous in this health conscious world. They teach user to achieve fitness goals in managed way. Due to their high fee and tight schedule they are unavailable to mass number of people. Another solution to this problem is to develop digital personal trainer portable instrument that may replace human personal trainers. We developed a portable digital exercise trainer device - BIOFIT that manages, monitors and records the user's physical status and workout during exercise session. It guides the user to exercise efficiently for specific fitness goal. It keeps the full exercise program i.e. exercises start date and time, duration, mode, control parameter, intensity in its memory which helps the user in managing his exercise. Exercise program can be downloaded from the internet. During exercise it continuously monitors the user's physiological parameters: heart rate, number of steps walked, and energy consumed. If these parameters do not range within prescribed target zone, the BIOFIT will alarm the user as a feedback to control exercise. The BIOFIT displays these parameters on graphic LCD. During exercise it continuously records the heart rate and number of steps walked every 10 seconds along with exercise date and time. This stored information can be used as treatment for the user by an exercise expert. Real-time ECG monitoring can be viewed wirelessly (RF Communication) on a remote PC.

A Study on the Quality Assurance of National Basemap Digital Mapping Database (국가기본도 수치지도제작 데이터베이스의 품질 확보에 관한 연구)

  • 이현직;최석근;신동빈;박경열
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1997
  • In recent years, the 1 : 5,000 scale Digital National Basemap(DNB) has been generated under National Geo-graphic Information System(NGIS) Project. The DNB database generated will be the backdrop data for thematic maps, underground facilities maps and so on. The DNB database will be distributed to the government and private sectors in near future so that it should meet the requirements as the basic data. In order to assure the quality of DNB database, the establishment of quality assurance process to database was in great need. In this study, we were mainly concerned with improving the quality of digital national basemap database in geomatric aspect as well as the processing time due to the amount of digital data generated. As a results of this study, the quality assuance process of DNB database is established and automatic quality assurance program is developed. Also, the program developed in this study is contributed to quality assurance of DNB database as well as economic aspects.

  • PDF

Path planning for autonomous lawn mower tractor

  • Song, Mingzhang;Kabir, Md. Shaha Nur;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.63-71
    • /
    • 2015
  • Path planning is an essential part for traveling and mowing of autonomous lawn mower tractors. Objectives of the paper were to analyze operation patterns by a skilled farmer, to extract and optimize waypoints, and to demonstrate generation of formatted planned path for autonomous lawn mower tractors. A 27-HP mower tractor was operated by a skilled farmer on grass fields. To measure tractor travel and operation characteristics, an RTK-GPS antenna with a 6-cm RMS error, an inertia motion sensing unit, a gyro compass, a wheel angle sensor, and a mower on/off sensor were mounted on the mower tractor, and all the data were collected at a 10-Hz rate. All the sensor data were transferred through a software program to show the status immediately on the notebook. Planned path was generated using the program parameter settings, mileage and time calculations, and the travel path was plotted using developed software. Based on the human operation patterns, path planning algorithm was suggested for autonomous mower tractor. Finally path generation was demonstrated in a formatted file and graphic display. After optimizing the path planning, a decrease in distance about 13% and saving of the working time about 30% was achieved. Field test data showed some overlap, especially in the turning areas. Results of the study would be useful to implement an autonomous mower tractor, but further research needs to improve the performance.

Development of Quantitative Ergonomic Assessment Method for Helicopter Cockpit Design in a Digital Environment (가상 환경 상의 헬리콥터 조종실 설계를 위한 정량적인 인간공학적 평가 방법 개발)

  • Jung, Ki-Hyo;Park, Jang-Woon;Lee, Won-Sup;Kang, Byung-Gil;Uem, Joo-Ho;Park, Seik-Won;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • For the development of a better product which fits to the target user population, physical workloads such as reach and visibility are evaluated using digital human simulation in the early stage of product development; however, ergonomic workload assessment mainly relies on visual observation of reach envelopes and view cones generated in a 3D graphic environment. The present study developed a quantitative assessment method of physical workload in a digital environment and applied to the evaluation of a Korean utility helicopter (KUH) cockpit design. The proposed assessment method quantified physical workloads for the target user population by applying a 3-step process and identified design features requiring improvement based on the quantified workload evaluation. The scores of physical workloads were quantified in terms of posture, reach, visibility, and clearance, and 5-point scales were defined for the evaluation measures by referring to existing studies. The postures of digital humanoids for a given task were estimated to have the minimal score of postural workload by finding all feasible postures that satisfy task constraints such as a contact between the tip of the index finger and a target point. The proposed assessment method was applied to evaluate the KUH cockpit design in the preliminary design stage and identified design features requiring improvement. The proposed assessment method can be utilized to ergonomic evaluation of product designs using digital human simulation.

The Expression of Computer Graphic Movement by The Phenomenon in Motion of Center of Mass at A Collision of Bodies (물체의 충돌 시 질량 중심의 위치이동 효과의 컴퓨터그래픽 표현)

  • 정병태
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.6
    • /
    • pp.853-858
    • /
    • 2001
  • When an absolute elastic collision occurs between a motion body and the another body inside a closed space, according to the current physical law and thus a computer graphical expression, it is defined that the center of mass of the closed space is not moved. This paper defines a physical law which includes a minor facts of the center of mass of a closed space moves during an absolute elastic collision occurs between a motion body and another body inside a closed space. The law defined in this paper has been verified using approximate lab equipments, and using this, graphical expression models and mathematical expressions for an absolute elastic collision between two bodies inside a closed space are del ed. When the minor effects of the center of mass moves is applied to the multi-body dynamic simulation program or haptic program, more accurate motion could be expressed. This definition can also be applied to an animation movie or other graphical motion expression for more realistic expression.

  • PDF

The Effect of Training Program for the Balance on the Gait Stability (균형능력 향상 운동프로그램이 보행안정성에 미치는 영향)

  • Lee, Young-Taeck;Kim, Hoon;Shin, Hak-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.373-380
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of balance training on gait stability. The study population included 17 male high school students who were divided into 3 groups, each of which underwent one of the following types of balance-training programs for 8 weeks: 1 foot standing on cushion foam, trunk muscle training, and inverted body position training. 0, 4, and 8 weeks, the following experiment was performed: The participants were asked to close their eyes and take 17 steps; the stability of forward and sideward movement was determined, and the direction linearity was measured. The results revealed that all the training programs caused a decrease in stride deviation and an increase in the and the stride length, thereby improving the stability of forward movement. All the programs decreased the variation in step width and were thus also effective in improving the stability of sideward movement. The inverted body position training program was considered very effective because the cross point appeared on post hoc graphic analysis after 4 weeks, and the deviation length for 10 m was low, i.e., below 4 cm. All the programs were effective with respect to direction linearity because they decreased the deviation in direction widths. The results indicate that whole-body neurocontrol training is more effective than simple muscle training and local focused balance training, although this neurocontrol training-in the form of inverted body position training-required a longer training period than did the other programs.

Evaluation of Polishing Performance Using The Improved Polishing Robot System Attached to Machining Center (머시닝센터 장착형 연마로봇의 성능 향상 및 연마 성능 평가)

  • Lee, Min-Cheol;Cho, Young-Gil;Lee, Man-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.179-190
    • /
    • 1999
  • To automate the polishing process, a polishing robot with two axes which is attached to a machining center with three axes has been developed by our previous research. This automatic polishing robot is able to keep the polishing tool normal to the curved surface of die and is able to maintain a constant pneumatic pressure. Therefore, in the case of a curved surface die, the surface roughness to be polished by the system with five axes is improved superior than the surface by a three-axis machining center. However, because the polishing robot was big and heavy, a polishing workspace was limited and then it was difficult to attach the robot to machining center. In this study, the smaller and lighter polishing robot than the previous has been designed to improve defects due to the magnitude and weight of the robot. And the sliding mode control ins applied to polishing robot to improve the tracking performance. To obtain switching parameters of sliding mode control, the signal compression method is used. Code separation program to separate the date for a three-axis machining center and a two-axis polishing robot from a five-axis NC data is improved for users to check conveniently the separated trajectory and to handle many data by using the graphic user interface. To evaluate the polishing performance of the developed robot, the polishing experiment for shadow mask was carried out. The result shows the automatic polishing robot has a good trajectory tracking performance and obtains a good polished workpiece efficiently under recommended polishing conditions.

  • PDF

A Study on the case analysis and the production of 3D digital fashion show (디지털 패션쇼 사례분석 및 3D 디지털 패션쇼 제작에 관한 연구)

  • Wu, Sehee;Kang, Yeonkyung;Ko, Younga;Kim, Anna;Kim, Naeun;Ko, Hyeongseok
    • Journal of Fashion Business
    • /
    • v.17 no.1
    • /
    • pp.64-80
    • /
    • 2013
  • A new technology of fashion show is opening the digital era and an imaginary fashion show is now arising as a new form of fashion show which allows one to enjoy a collection through the monitor without holding a real fashion show. Digital fashion show allows designer to create infinite ideas by articulating the designer's concept through not only garments but also other factors. In this research, We will analyze cases which are mixtures of digital technology and fashion show and will suggest a new paradigm of fashion show by producing an imaginary fashion show which cannot be easily articulated in an ordinary real fashion show, articulated by garments created by digital technology and graphic effects. The program used for this study is 'DC Suite 2.0' developed by Physan and Digital Clothing Center of Seoul National University, available for 2D pattern production and 3D simulation. In addition, in order to enhance representation of the visual effects, Maya's Qualoth and V-ray program which could be compatible with 'DC Suite' were used to make 3D digital fashion show.

Integrated Control of Underwater Manipulator and Master Arm using LED Communication (LED 광통신을 적용한 마스터 암과 수중 매니퓰레이터의 통합 제어)

  • Oh, Ji-Youn;Jun, Bong-Huan;Choi, Hyeung-Sik;Kim, Joon-Young;Ji, Dae-Hyeong;Son, Hyeon-Joong;Jo, Sung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.415-425
    • /
    • 2016
  • This paper presents the results of a study on the control system for an underwater manipulator controlled by a master arm through LED communication. The underwater manipulator was designed to be actuated by electric motors with six degrees of freedom for operation in various underwater environments. The master arm, which can remotely control the manipulator, was designed with a structure similar to the manipulator for convenient control. An underwater LED communication system was developed to communicate between the master arm and underwater manipulator. An integrated control program was developed that included data conversion, monitoring, datalogging, and filtering. Some experiments were performed to verify the performance of the developed control system of the master arm, manipulator, and LED communication system, and the results are presented.