• Title/Summary/Keyword: Graphene on Si

Search Result 136, Processing Time 0.031 seconds

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Development of Pt-free counter electrode for dye-sensitized solar cell (Pt free 염료감응형 태양전지 전극에 대한 연구)

  • Hwang, Hyun Suk;Park, Yong Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.107-109
    • /
    • 2014
  • Dye-sensitezed solar cell(DSSC) has aroused intense interest owing to its competitive price and stabilized properties than Si based solar cells. Recently, many studies have been reported on the DSSC, especially development of Pt-free counter electrode. In this paper, graphene is chosen counter electrode for low cost material and developed its properties. To estimate the properties of counter electrode, graphene and Pt thin films have been fabricated on FTO substrates respectively, than the films are tested AFM and J-V evaluation method. A graphene of 0.1 wt% has shown current density of 11.68 mA/cm2, maximum efficiency of 4.34% which is similar with that of Pt counter electrode. It confirmed that graphene could be good material for counter electrode if its synthesizing conditions were developed.

Study of CVD Growth Single-walled Carbon Nanotubes via Catalytic Layer Supported by Self-assembled Monolayer

  • Adhikari, Prashanta Dhoj;Kim, Sung-Hwan;Song, Woo-Seok;Lee, Su-Il;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.402-402
    • /
    • 2012
  • Bundles of single-walled carbon nanotube (SWCNTs) were grown using catalytic layer supported by self-assembled monolayers (SAMs). Amine-SAMs were introduced on SiO2/Si substrate (SAMs/Si) there then iron nanoclusters solution was dropped on it through spin-coating (Fe/SAMs/Si). This catalytic template was used to grow CNTs and the synthesized carbon material was confirmed the bundles of dense SWCNTs with incorporation of ca.1% nitrogen. The SAMs has played an active role to support catalytic layer and also acted as a source of N-dope onto SWCNTs in CVD.

  • PDF

Study on Finding Optimum Condition of Plasma Treatment on SiO2 Substrates to Reduce Contact Resistance at Graphene-Metal Interface (그래핀-금속 접촉 저항을 줄이기 위한 SiO2 기판 플라즈마 처리의 최적화 연구)

  • Gang, Sa-Rang;Ra, Chang-Ho;Lee, Dae-Yeong;Yu, Won-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.96-96
    • /
    • 2013
  • 그래핀과 금속 결합에서 발생하는 접촉 저항을 줄이기 위한 목적으로, 소자 제작에 사용되는 $SiO_2$ 기판의 표면을 플라즈마를 사용하여 에칭하는 최적의 조건에 대해 연구하였다. 기존에 발표된 연구 결과에 따라 $SF_6$$O_2$를 섞어 플라즈마 처리를 하였고, 플라즈마 방전에 사용 된 두 가스의 혼합 비율을 조절함으로써 소자 제작에 적합한 조건을 찾고자 하였다. 플라즈마 처리 전후의 $SiO_2$ 기판의 표면 측정은 AFM (Atomic Force Microscope)을 사용하였고, 단면은 SEM(Scanning Electron Microscope)을 통해 확인하였다.

  • PDF

Effect of Antifouling Composite Membrane on Membrane Bioreactor: A Review (방오성 복합막의 막생물반응기에 대한 영향)

  • Lee, Bo Woo;Lee, Sunwoo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In membrane bioreactor (MBR), activated sludge degrade the biological component and membrane process separate this bacterial flocks as well the suspended solids. However, membrane fouling is one of the major issues in MBR. In this review, composite membrane used in MBR to overcome fouling is discussed. It is classified into membrane containing carbon and noncarbon materials. Introducing graphene, graphene oxide (GO) and carbon nanotubes or their modified part into pristine membrane enhance hydrophilicity of the composite membrane. Inorganic materials like silicon dioxide (SiO2) or titanium dioxide (TiO2) are also incorporated for preparing composite membrane to increase its water flux.

Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Mollaee, Saeed;Barati, Mohammad Reza;Afshari, Behzad Mohasel;Hamouda, A.M.S.
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 2020
  • Buckling and post-buckling behaviors of geometrically imperfect annular sector plates made from nanoparticle reinforced composites have been investigated. Two types of nanoparticles are considered including graphene oxide powders (GOPs) and silicone oxide (SiO2). Nanoparticles are considered to have uniform and functionally graded distributions within the matrix and the material properties are derived using Halpin-Tsai procedure. Annular sector plate is formulated based upon thin shell theory considering geometric nonlinearity and imperfectness. After solving the governing equations via Galerkin's technique, it is showed that the post-buckling curves of annular sector plates rely on the geometric imperfection, nanoparticle type, amount of nanoparticles, sector inner/outer radius and sector open angle.

Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor

  • Chuan, M.W.;Wong, K.L.;Hamzah, A.;Rusli, S.;Alias, N.E.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.91-99
    • /
    • 2021
  • Silicene is an emerging two-dimensional (2D) semiconductor material which has been envisaged to be compatible with conventional silicon technology. This paper presents a theoretical study of uniformly doped silicene with aluminium (AlSi3) Field-Effect Transistor (FET) along with the benchmark of device performance metrics with other 2D materials. The simulations are carried out by employing nearest neighbour tight-binding approach and top-of-the-barrier ballistic nanotransistor model. Further investigations on the effects of the operating temperature and oxide thickness to the device performance metrics of AlSi3 FET are also discussed. The simulation results demonstrate that the proposed AlSi3 FET can achieve on-to-off current ratio up to the order of seven and subthreshold swing of 67.6 mV/dec within the ballistic performance limit at room temperature. The simulation results of AlSi3 FET are benchmarked with FETs based on other competitive 2D materials such as silicene, graphene, phosphorene and molybdenum disulphide.

Research on Fabrication of Graphene Sheet (그라핀 기판 제작 연구)

  • Oh, Se-Man;Cho, Won-Ju;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.384-384
    • /
    • 2008
  • 그라핀 기판 제작을 위해서는 그라파이트의 탈착이 가장 핵심 기술이다. 본 연구에서는 신뢰성 있는 그라핀 기판 제작을 위해서, HOPG(Highly Ordered Pyrolytic Graphite) 기판에 고농도의 이온을 주입하고, HOPG를 이형기판에 본딩한후, 후속 열처리를 통해 HOPG를 탈착시켜 그리핀을 얻는 일련의 기본 실험에 대한 결과를 보여 주고자 한다. 기대하는 효과는 고농도의 수소/산소 이온의 경우 주입된 고농도의 수소/산소가 후속 열처리동안 이동 및 뭉침현상을 통해 HOPG기판 내에 수소압력(혹은 CO2 발생)을 증가시켜 HOPG를 자르는 것을 기대하고 있다. 일차 수소이온 주입의 실험결과, 기대와는 달리 $900^{\circ}C$ 열처리에도 절단현상이 발견되지 않아서 산소이온주입에 대한 추가실험을 진행 중이다. 그라핀 본딩의 경우 그라핀의 큰 roughness로 인해 $SiO_2$만의 Fusion 본딩은 불가능함을 여러 실험을 통해 알 수 있었고, 현재 SiO2/SOG 혹은 SiO2/Fox를 이용한 본딩실험을 진행중이다.

  • PDF