• 제목/요약/키워드: Graphene hybrid

검색결과 100건 처리시간 0.026초

Simultaneous growth of graphene and vertically aligned single-walled carbon nanotubes at low temperature by chemical vapor deposition

  • Hong, Suck Won;Kim, Kwang Ho;Jung, Hyun Kyung;Kim, Daesuk;Lee, Hyung Woo
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.154-157
    • /
    • 2012
  • We present the simultaneous growth of single-walled carbon nanotubes and graphene with the optimal conditions of the synthesizing parameters. The dense and vertically aligned SWNTs having the length of over 100 ㎛ was grown by 2 nm-thick Fe catalytic layer. From 650 ℃, the vertically well-grown SWNTs were obtained by increasing the temperature. The severallayered graphene was synthesized with the gas mixing ratio of 15 : 1(H2 : C2H2) at 650 ℃ and higher temperatures. With these optimal conditions, the vertically well-grown SWNTs and the several-layered graphene were synthesized simultaneously. The presence of SWNTs and the layer of graphene were verified by field emission scanning electron microscopy and high resolution transmission electron microscopy. From the result of this simultaneous synthesizing approach, the possibility of one step growth process of CNTs and grapheme could be verified.

Pseudocapacitive Behavior of Lignin Nanocrystals Hybridized onto Reduced Graphene Oxide for Renewable Energy Storage Material

  • Kim, Yun Ki;Park, Ho Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.488.1-488.1
    • /
    • 2014
  • As the society demands the high performance energy storage devices, development of efficient and renewable energy storage materials has been a topic of interest. Here, we report pseudocapacitive behaviors of biopolymer (lignin) that was confined onto reduced graphene oxides (RGOs) for a renewable energy storage system. The strong surface confinement of quinone groups onto the electroconductive RGOs created the renewable hybrid electrodes for supercapacitors (SCs) with fast and reversible redox charge transfer. As a result, the pseudocapacitors fabricated with the hybrid electrodes of lignin and RGO presented the outstanding electrochemical performances of remarkable rate and cyclic performances:~4% capacitance drop after 3000 cycles and a maximum capacitance of 432 F g-1.

  • PDF

Device Applications of Graphene and Their Challenges

  • Lee, B.H.;Hwang, H.J.;Yang, J.H.;Baek, E.J.;Kang, S.C.;Lee, Y.G.;Kang, C.G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.114-114
    • /
    • 2012
  • Even though graphene was introduced with a great hope to replace silicon in future, small (or zero) band gap and poor stability have become major challenges in graphene electronics. Especially, rectification and amplification function which are the elemental functions of silicon device, is very difficult to implement without a bandgap. However, the graphene can still be used in many other device applications if the merits of graphene are creatively utilized. For example, graphene can be applied to almost any kind of substrate. Its conductivity can be varied in some degree using electric field, charge dipole, attached molecules, and many other ways. Recently, graphene stacked with ferroelectric materials or piezoelectric materials has been actively studied for various device applications. In this talk, various device applications of graphene using hybrid stack or novel device structure will be introduced and their prospect will be discussed.

  • PDF

A Review of Graphene Plasmons and its Combination with Metasurface

  • Liu, Chuanbao;Bai, Yang;Zhou, Ji;Zhao, Qian;Qiao, Lijie
    • 한국세라믹학회지
    • /
    • 제54권5호
    • /
    • pp.349-365
    • /
    • 2017
  • Graphene has attracted a lot of attentions due to the unique electrical and optical properties. Compared with the noble metal plasmons in the visible and near-infrared frequencies, graphene can support surface plasmons in the lower frequencies of terahertz and mid-infrared and it demonstrates an extremely large confinement at the surface because of the particular electronic band structures. Especially, the surface conductivity of graphene can be tuned by either chemical doping or electrostatic gating. These features make graphene a promising candidate for plasmonics, biosensing and transformation optics. Furthermore, the combination of graphene and metasurfaces presents a powerful tunability for exotic electromagnetic properties, where the metasurfaces with the highly-localized fields offer a platform to enhance the interaction between the incident light and graphene and facilitate a deep modulation. In this paper, we provide an overview of the key properties of graphene, such as the surface conductivity, the propagating surface plasmon polaritons, and the localized surface plasmons, and the hybrid graphene/metasurfaces, either metallic and dielectric metasurfaces, from terahertz to near-infrared frequencies. Finally, there is a discussion for the current challenges and future goals.

Chemically Modified Graphene and Their Hybrid Materials: Toward Printed Electronics

  • 정승열
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.71-71
    • /
    • 2012
  • Chemically modified graphene has been great interest for the application of printed electronics using solution prossesable technique. Here, we demonstrate a large area graphene exfoliation method with fewer defects on the basal plane by application of shear stress in solution to obtain high quality reduced graphene oxide (RGO). Moreover, we introduce a novel route to preparing highly concentrated and conductive RGO in various solvents by monovalent cation-${\pi}$ interaction. Noncovalent binding forces can be induced between a monopole (cation) and a quadrupole (aromatic ${\pi}$ system). The stability of this RGO dispersion was more sensitive to the strength of the cation-${\pi}$ interactions than to the cation-oxygen functional group interactions. The RGO film prepared without a post-annealing process displayed superior electrical conductivity of 97,500 S/m. Our strategy can facilitate the development of large scalable production methods for preparing printed electronics made from high-quality RGO nanosheets.

  • PDF

Large-Scale Graphene Production Techniques for Practical Applications

  • Bae, Sukang;Lee, Seoung-Ki;Park, Min
    • Applied Science and Convergence Technology
    • /
    • 제27권5호
    • /
    • pp.79-85
    • /
    • 2018
  • Many studies have been conducted on large-scale graphene synthesis by chemical vapor deposition. Furthermore, numerous researchers have attempted to develop processes that can continuously fabricate uniform and high-quality graphene. To compete with other types of carbon materials (carbon black, carbon fiber, carbon nanotubes, and so on), various factors, such as price, mass manufacturing capability, and quality, are crucial. Thus, in this study, we examine various large-scale graphene production methods focusing on cost competitiveness and productivity improvements for applications in various fields.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

그래핀과 Zn-Al 이중층상 수산화물 복합체의 제조 및 특성분석 (Preparation and Characterization of Graphene/Zn-Al Layered Double Hydroxide Composites)

  • 이종희;고일웅;김기영;임정혁;김경민
    • 접착 및 계면
    • /
    • 제12권4호
    • /
    • pp.133-137
    • /
    • 2011
  • 그래파이트 옥사이드(GO)를 tetramethylammonium hydroxide (TMAOH)수용액을 이용하여 나노 크기로 분산되어 박리된 그래파이트 옥사이드(Exfoliated Graphite Oxide: EGO)를 제조하였다. 얻어진 EGO를 $Zn(NO_3)_2{\cdot}6H_2O$, $Al(NO_3)_3{\cdot}9H_2O$, urea, trisodium citrate의 혼합용액에 넣어 격렬히 교반 후 고압멸균기에서 열수 처리하여 동시에 환원된 그래핀(RGO)과 Zn-Al 이중층상 수산화물(LDH)의 나노 복합재료를 제조하였다. 즉, EGO의 표면에 두 개의 금속이온이 흡착된 후 열수처리 환원을 통하여 Zn-Al 이중층상 수산화물이 RGO의 표면에 자유롭게 성장하여 복합화 되었다. 얻어진 그래핀/Zn-Al LDH의 구조 및 형태와 열적 특성은 FE-SEM, EDX, TEM, FT-IR, XRD, TGA와 DSC를 통하여 분석하였다.

Spray coating of electrochemically exfoliated graphene/conducting polymer hybrid electrode for organic field effect transistor

  • Kim, Youn;Kwon, Yeon Ju;Hong, Jin-Yong;Park, Minwoo;Lee, Cheol Jin;Lee, Jea Uk
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.399-405
    • /
    • 2018
  • We report the fabrication of organic field-effect transistors (OFETs) via spray coating of electrochemically exfoliated graphene (EEG) and conducting polymer hybrid as electrodes. To reduce the roughness and sheet resistance of the EEG electrodes, subsequent coating of conducting polymer (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)) and acid treatment was performed. After that, active channel layer was developed by spin coating of semiconducting poly(3-hexylthiophene) on the hybrid electrodes to define the bottom gate bottom contact configuration. The OFET devices with the EEG/PEDOT:PSS hybrid electrodes showed a reasonable electrical performances (field effect mobility = $0.15cm^2V^{-1}\;s^{-1}$, on/off current ratio = $10^2$, and threshold voltage = -1.57V). Furthermore, the flexible OFET devices based on the Polydimethlsiloxane (PDMS) substrate and ion gel dielectric layer exhibited higher electrical performances (field effect mobility = $6.32cm^2V^{-1}\;s^{-1}$, on/off current ratio = $10^3$, and threshold voltage = -1.06V) and excellent electrical stability until 1000 cycles of bending test, which means that the hybrid electrode is applicable to various organic electronic devices, such as flexible OFETs, supercapacitors, organic sensors, and actuators.

CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가 (Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance)

  • 박용진;김재현;이규복;이승모
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.135-141
    • /
    • 2020
  • 그래핀은 슈퍼커패시터의 전극소재로서 이상적인 물리적/화학적 물성을 지니고 있지만, 실제 장치에 적용하기에는 그 전기화학적 성능이 충분하지 못하다. 본 연구에서는 높은 전기 전도성 및 고다공성을 지닌 다층구조의 그래핀을 생성하기 위해, 산화 그래핀을 가정용 레이저 조각기를 사용하여 환원하였다. 제작된 그래핀의 비정전용량을 향상시키기 위하여, 원자층 단위 증착법을 이용하여 의사커패시터 거동을 나타내는 VOx를 균일하게 증착하였다. 이는 XPS 분석을 통해 VOx/그래핀 복합체에서 다양한 상의 VOx를 관찰하였다. VOx/그래핀 복합체는 VOx가 없는 그래핀(~50 F/g)과 비교할 때 상당히 향상된 비정전용량(~189 F/g)을 보였다. 본 연구에서 소개한 에너지 저장 장치에 사용되는 그래핀 기반 전극의 제작 방법은 여러가지 제작 방법의 대안책 중 하나로 사용될 것으로 기대된다.