• Title/Summary/Keyword: Graph Cut

Search Result 101, Processing Time 0.024 seconds

Fully automatic Segmentation of Knee Cartilage on 3D MR images based on Knowledge of Shape and Intensity per Patch (3차원 자기공명영상에서 패치 단위 형상 및 밝기 정보에 기반한 연골 자동 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Shim, Hack-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.75-81
    • /
    • 2010
  • The segmentation of cartilage is crucial for the diagnose and treatment of osteoarthritis (OA), and has mostly been done manually by an expert, requiring a considerable amount of time and effort due to the thin shape and vague boundaries of the cartilage in MR (magnetic resonance) images. In this paper, we propose a fully automatic method to segment cartilage in a knee joint on MR images. The proposed method is based on a small number of manually segmented images as the training set and comprised of an initial per patch segmentation process and a global refinement process on the cumulative per patch results. Each patch for per patch segmentation is positioned by classifying the bone-cartilage interface on the pre-segmented bone surface. Next, the shape and intensity priors are constructed for each patch based on information extracted from reference patches in the training set. The ratio of influence between the shape and intensity priors is adaptively determined per patch. Each patch is segmented by graph cuts, where energy is defined based on constructed priors. Finally, global refinement is conducted on the global cartilage using the results of per patch segmentation as the shape prior. Experimental evaluation shows that the proposed framework provide accurate and clinically useful segmentation results.

Automated Detecting and Tracing for Plagiarized Programs using Gumbel Distribution Model (굼벨 분포 모델을 이용한 표절 프로그램 자동 탐색 및 추적)

  • Ji, Jeong-Hoon;Woo, Gyun;Cho, Hwan-Gue
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.453-462
    • /
    • 2009
  • Studies on software plagiarism detection, prevention and judgement have become widespread due to the growing of interest and importance for the protection and authentication of software intellectual property. Many previous studies focused on comparing all pairs of submitted codes by using attribute counting, token pattern, program parse tree, and similarity measuring algorithm. It is important to provide a clear-cut model for distinguishing plagiarism and collaboration. This paper proposes a source code clustering algorithm using a probability model on extreme value distribution. First, we propose an asymmetric distance measure pdist($P_a$, $P_b$) to measure the similarity of $P_a$ and $P_b$ Then, we construct the Plagiarism Direction Graph (PDG) for a given program set using pdist($P_a$, $P_b$) as edge weights. And, we transform the PDG into a Gumbel Distance Graph (GDG) model, since we found that the pdist($P_a$, $P_b$) score distribution is similar to a well-known Gumbel distribution. Second, we newly define pseudo-plagiarism which is a sort of virtual plagiarism forced by a very strong functional requirement in the specification. We conducted experiments with 18 groups of programs (more than 700 source codes) collected from the ICPC (International Collegiate Programming Contest) and KOI (Korean Olympiad for Informatics) programming contests. The experiments showed that most plagiarized codes could be detected with high sensitivity and that our algorithm successfully separated real plagiarism from pseudo plagiarism.

Failure Prediction and Behavior of Cut-Slope based on Measured Data (계측결과에 의한 절토사면의 거동 및 파괴예측)

  • Jang, Seo-Yong;Han, Heui-Soo;Kim, Jong-Ryeol;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.165-175
    • /
    • 2006
  • To analyze the deformation and failure of slopes, generally, two types of model, Polynomial model and Growth model, are applied. These two models are focused on the behavior of the slope by time. Therefore, this research is more focused on predicting of slope failure than analyzing the slope behavior by time. Generally, Growth model is used to analyze the soil slope, to the contrary, Polynomial model is used for rock slope. However, 3-degree polynomial($y=ax^3+bx^2+cx+d$) is suggested to combine two models in this research. The main trait of this model is having an asymptote. The fields to adopt this model are Gosujae Danyang(soil slope) and Youngduk slope(rock slope), which are the cut-slope near national road. Data from Gosujae are shown the failure traits of soil slope, to the contrary, those of Youngduk slope are shown the traits of rock slope. From the real-time monitoring data of the slope, 3-degree polynomial is proved as excellent system to analyze the failure and behavior of slope. In case of Polynomial model, even if the order of polynomials is increased, the $R^2$ value and shape of the curve-fitted graph is almost the same.

Development of a Predictive Model Describing the Growth of Listeria Monocytogenes in Fresh Cut Vegetable (샐러드용 신선 채소에서의 Listerio monocytogenes 성장예측모델 개발)

  • Cho, Joon-Il;Lee, Soon-Ho;Lim, Ji-Su;Kwak, Hyo-Sun;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • In this study, predictive mathematical models were developed to predict the kinetics of Listeria monocytogenes growth in the mixed fresh-cut vegetables, which is the most popular ready-to-eat food in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At the specified storage temperatures, the primary growth curve fit well ($r^2$=0.916~0.981) with a Gompertz and Baranyi equation to determine the specific growth rate (SGR). The Polynomial model for natural logarithm transformation of the SGR as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). As the storage temperature decreased from $30^{\circ}C$ to $4^{\circ}C$, the SGR decreased, respectively. Polynomial model was identified as appropriate secondary model for SGR on the basis of most statistical indices such as mean square error (MSE=0.002718 by Gompertz, 0.055186 by Baranyi), bias factor (Bf=1.050084 by Gompertz, 1.931472 by Baranyi) and accuracy factor (Af=1.160767 by Gompertz, 2.137181 by Baranyi). Results indicate L. monocytogenes growth was affected by temperature mainly, and equation was developed by Gompertz model (-0.1606+$0.0574^*Temp$+$0.0009^*Temp^*Temp$) was more effective than equation was developed by Baranyi model (0.3502-$0.0496^*Temp$+$0.0022^*Temp^*Temp$) for specific growth rate prediction of L.monocytogenes in the mixed fresh-cut vegetables.

Realistic Building Modeling from Sequences of Digital Images

  • Song, Jeong-Heon;Kim, Min-Suk;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.516-516
    • /
    • 2002
  • With the wide usage of LiDAR data and high-resolution satellite image, 3D modeling of buildings in urban areas has become an important research topic in the photogrammetry and computer vision field for many years. However the previous modeling has its limitations of merely texturing the image to the DSM surface of the study area and does not represent the relief of building surfaces. This study is focused on presenting a system of realistic 3D building modeling from consecutive stereo image sequences using digital camera. Generally when acquiring images through camera, various parameters such as zooming, focus, and attitude are necessary to extract accurate results, which in certain cases, some parameters have to be rectified. It is, however, not always possible or practical to precisely estimate or rectify the information of camera positions or attitudes. In this research, we constructed the collinearity condition of stereo images through extracting the distinctive points from stereo image sequence. In addition, we executed image matching with Graph Cut method, which has a very high accuracy. This system successfully performed the realistic modeling of building with a good visual quality. From the study, we concluded that 3D building modeling of city area could be acquired more realistically.

  • PDF

An Analysis on the Morphological Relationship of Hair Styles with Changes in Necklines and Collars: From 16th Century to 19th Century

  • Kim, Hyoju;Bae, Soojeong
    • Journal of Fashion Business
    • /
    • v.18 no.3
    • /
    • pp.117-133
    • /
    • 2014
  • This thesis aims to investigate the morphologic relationship among the neckline, collar, and hair style, in which the width and height were measured by selecting the representative costumes from 16th to 19th centuries. The pieces of 170 pictures selected by fashion experts were cut in the same condition, with the part of the end of shoulder, head, and chest all placed on the equal level. The products were directly measured by a team of 3 specialists for verification of this study, of which results were calculated into average. The values of output were categorized into the unit of decade and finally into a graph of variation, in which the trend and relationship were evaluated according to the width and height. In 16th century, the width and height of the neckline were inversely proportional to those of hair style, while those of collar were proportional to those of hair style. In 17th century, the width and height of the hair style were proportional to those of neckline and collar. In 18th century, those of the neckline were inversely proportional to the hair style, with no collar found. In 19th century, the width of the neckline and collar were proportional to that of the hair style, while the height of the neckline and collar were inversely proportional to that of the hair style. The analysis of the morphologic relationship among neckline, collar, and hair style resulting from this study revealed that the change of the hair style took place corresponding to those of neckline and collar. Generally, the width of the hair style was found to be more resistant to change, compared to those of neckline and collar that were more susceptible. The height of the neckline was more resistant to change, compared to those of the hair style and collar presenting their frequently fluctuating height. Conclusively, the factor of height rather than that of width showed more dominant proportions, because the various forms of the collar and hair style evolved in terms of the height rather that width, relative to that of the neckline.

A study on the electrostatic and magnetic flux cut off effect using anti-magnetic material (반자성 물질에 의한 전자기차단효과에 관한 연구)

  • Hwang, Yoon-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1473-1480
    • /
    • 2008
  • Bisumus has a low melting point, making it easier to handle. This allows us to test what type of effect diamagnetism has on electro static and magnetic field shields. However, the actual materials for experimentation have only ever been manufactured cylindrically, and so there have been no recorded cases of measurements to this effect. To understand what kind of effect pure bisumus as diamagnetism has on electro static and magnetic shields in comparison to other materials, bisumus, along with copper, aluminum and iron 스텐도, were used to make a cylinder each. These cylinders were then used to measure and compare the electro static shield and magnetic shield at different bands of frequencies, starting from a low frequency. As shown on the graph/chart/diagram, the best results were recorded for copper and bisumus as diamagnetism in an electro static field. In terms of magnetic shielding, iron provided the best results, as expected, whereas bisumus displayed minimal effect.

Objectively Measured Physical Activity of Vietnamese Adults With Type 2 Diabetes: Opportunities to Intervene

  • Do, Vuong Van;Jancey, Jonine;Pham, Ngoc Minh;Nguyen, Chung Thanh;Hoang, Minh Van;Lee, Andy H.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • Objectives: To objectively determine and compare the physical activity (PA) levels of adults newly diagnosed with type 2 diabetes (T2D) and adults without T2D in Vietnam using an accelerometer. Methods: A total of 120 participants with newly diagnosed T2D and 120 adults without T2D were recruited from a large hospital in Hanoi, the capital city of Vietnam. All participants wore an ActiGraph GT3X accelerometer for at least 5 days, including 1 weekend day. Freedson cut-off points were used to estimate different intensities of PA. In addition, comparisons between groups were made with respect to achieving the World Health Organization (WHO) and International Diabetes Federation (IDF) recommended PA guidelines. Results: Men with T2D had significantly lower levels of PA than men without T2D. The respective multivariable-adjusted mean values of daily step count, daily light-intensity, moderate-intensity, and moderate-to-vigorous-intensity PA were approximately 14%, 19%, and 22% lower in the men with T2D than in their non-T2D counterparts. However, women with T2D accumulated a greater number of steps per day than women without T2D. Only 59.2% of the adults with T2D met the minimum recommended level of PA (WHO and IDF), compared to 74.2% of adults without T2D (p<0.05). After adjusting for potential confounders, participants with T2D experienced 50.0% significantly lower odds of achieving PA recommendations. Conclusions: Vietnamese men with T2D were less physically active than those without T2D, and adults with T2D were less likely to meet PA guidelines. The results suggest a need for integrating PA into the self-management of this chronic condition.

Efficient 3D Geometric Structure Inference and Modeling for Tensor Voting based Region Segmentation (효과적인 3차원 기하학적 구조 추정 및 모델링을 위한 텐서 보팅 기반 영역 분할)

  • Kim, Sang-Kyoon;Park, Soon-Young;Park, Jong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.10-17
    • /
    • 2012
  • In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. In this paper, we propose a method for creating 3D virtual scenes based on 2D image that is completely automatic and requires only a single scene as input data. The proposed method is similar to the creation of a pop-up illustration in a children's book. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting to an image segmentation. The tensor voting is used based on the fact that homogeneous region in an image is usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. And then, our algorithm labels regions of the input image into coarse categories: "ground", "sky", and "vertical". These labels are then used to "cut and fold" the image into a pop-up model using a set of simple assumptions. The experimental results show that our method successfully segments coarse regions in many complex natural scene images and can create a 3D pop-up model to infer the structure information based on the segmented region information.

Evaluation of the Shape Accuracy of Turning Operations (선삭가공에서의 형상 정밀도에 대한 평가)

  • Park, Dong-Keun;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1645-1651
    • /
    • 2015
  • This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.