• Title/Summary/Keyword: Graph Convolution

Search Result 26, Processing Time 0.022 seconds

Impulsive Noise Mitigation Scheme Based on Deep Learning (딥 러닝 기반의 임펄스 잡음 완화 기법)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.138-149
    • /
    • 2018
  • In this paper, we propose a system model which effectively mitigates impulsive noise that degrades the performance of power line communication. Recently, deep learning have shown effective performance improvement in various fields. In order to mitigate effective impulsive noise, we applied a convolution neural network which is one of deep learning algorithm to conventional system. Also, we used a successive interference cancellation scheme to mitigate impulsive noise generated from multi-users. We simulate the proposed model which can be applied to the power line communication in the Section V. The performance of the proposed system model is verified through bit error probability versus SNR graph. In addition, we compare ZF and MMSE successive interference cancellation scheme, successive interference cancellation with optimal ordering, and successive interference cancellation without optimal ordering. Then we confirm which schemes have better performance.

A Study on the Hardware Complexity Reduction of Hilbert transformer by MAG algorithm (MAG 알고리즘에 의한 힐버트 변환기의 하드웨어 복잡도 감소에 관한 연구)

  • Kim, Young-Woong;Lee, Young-Seock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.364-370
    • /
    • 2011
  • The Hilbert transform performs a role to transform band pass signals into low pass signals in wireless communication systems. The operation of Hilbert transform is based on a convolution process which is required adding and multiplying calculations. When the Hilbert transform is designed and hardware-implemented at gate level, the adding and multiplying operation requires a high power consumption and a occupation of wide area on a chip. So the results of adding and multiplying operation cause to degrade the performance of implemented system. In this paper, the new Hilbert transformer is proposed, which has a low hardware complexity by application of MAG(Minimum Adder Graph) algorithm. The proposed Hilbert transformer was simulated in ISE environment of Xilinx and showed the reduction of hardware complexity comparing with the number of gate in the conventional Hilbert transformer.

BERT & Hierarchical Graph Convolution Neural Network based Emotion Analysis Model (BERT 및 계층 그래프 컨볼루션 신경망 기반 감성분석 모델)

  • Zhang, Junjun;Shin, Jongho;An, Suvin;Park, Taeyoung;Noh, Giseop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.34-36
    • /
    • 2022
  • In the existing text sentiment analysis models, the entire text is usually directly modeled as a whole, and the hierarchical relationship between text contents is less considered. However, in the practice of sentiment analysis, many texts are mixed with multiple emotions. If the semantic modeling of the whole is directly performed, it may increase the difficulty of the sentiment analysis model to judge the sentiment, making the model difficult to apply to the classification of mixed-sentiment sentences. Therefore, this paper proposes a sentiment analysis model BHGCN that considers the text hierarchy. In this model, the output of hidden states of each layer of BERT is used as a node, and a directed connection is made between the upper and lower layers to construct a graph network with a semantic hierarchy. The model not only pays attention to layer-by-layer semantics, but also pays attention to hierarchical relationships. Suitable for handling mixed sentiment classification tasks. The comparative experimental results show that the BHGCN model exhibits obvious competitive advantages.

  • PDF

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

The Design and Practice of Disaster Response RL Environment Using Dimension Reduction Method for Training Performance Enhancement (학습 성능 향상을 위한 차원 축소 기법 기반 재난 시뮬레이션 강화학습 환경 구성 및 활용)

  • Yeo, Sangho;Lee, Seungjun;Oh, Sangyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.263-270
    • /
    • 2021
  • Reinforcement learning(RL) is the method to find an optimal policy through training. and it is one of popular methods for solving lifesaving and disaster response problems effectively. However, the conventional reinforcement learning method for disaster response utilizes either simple environment such as. grid and graph or a self-developed environment that are hard to verify the practical effectiveness. In this paper, we propose the design of a disaster response RL environment which utilizes the detailed property information of the disaster simulation in order to utilize the reinforcement learning method in the real world. For the RL environment, we design and build the reinforcement learning communication as well as the interface between the RL agent and the disaster simulation. Also, we apply the dimension reduction method for converting non-image feature vectors into image format which is effectively utilized with convolution layer to utilize the high-dimensional and detailed property of the disaster simulation. To verify the effectiveness of our proposed method, we conducted empirical evaluations and it shows that our proposed method outperformed conventional methods in the building fire damage.

Learning efficiency checking system by measuring human motion detection (사람의 움직임 감지를 측정한 학습 능률 확인 시스템)

  • Kim, Sukhyun;Lee, Jinsung;Yu, Eunsang;Park, Seon-u;Kim, Eung-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.290-293
    • /
    • 2021
  • In this paper, we implement a learning efficiency verification system to inspire learning motivation and help improve concentration by detecting the situation of the user studying. To this aim, data on learning attitude and concentration are measured by extracting the movement of the user's face or body through a real-time camera. The Jetson board was used to implement the real-time embedded system, and a convolutional neural network (CNN) was implemented for image recognition. After detecting the feature part of the object using a CNN, motion detection is performed. The captured image is shown in a GUI written in PYQT5, and data is collected by sending push messages when each of the actions is obstructed. In addition, each function can be executed on the main screen made with the GUI, and functions such as a statistical graph that calculates the collected data, To do list, and white noise are performed. Through learning efficiency checking system, various functions including data collection and analysis of targets were provided to users.

  • PDF