• Title/Summary/Keyword: Graph Coloring Problem

Search Result 41, Processing Time 0.014 seconds

Proof Algorithm of Erdös-Faber-Lovász Conjecture (Erdös-Faber-Lovász 추측 증명 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.269-276
    • /
    • 2015
  • This paper proves the Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture of the vertex coloring problem, which is so far unresolved. The Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture states that "the union of k copies of k-cliques intersecting in at most one vertex pairwise is k-chromatic." i.e., x(G)=k. In a bid to prove this conjecture, this paper employs a method in which it determines the number of intersecting vertices and that of cliques that intersect at one vertex so as to count a vertex of the minimum degree ${\delta}(G)$ in the Minimum Independent Set (MIS) if both the numbers are even and to count a vertex of the maximum degree ${\Delta}(G)$ in otherwise. As a result of this algorithm, the number of MIS obtained is x(G)=k. When applied to $K_k$-clique sum intersecting graphs wherein $3{\leq}k{\leq}8$, the proposed method has proved to be successful in obtaining x(G)=k in all of them. To conclude, the Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture implying that "the k-number of $K_k$-clique sum intersecting graph is k-chromatic" is proven.